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Typing λ calculus with Hindley-Milner

Syntax

Expression: E = v
| E E
| λv 7→ E

Variable: v = f | x | y | . . .

(x :: τ) ∈ Γ
(MonoVar)

Γ ` x :: τ

Γ ` E :: τ ′ → τ Γ ` F :: τ ′
(App)

Γ ` E F :: τ

Γ; (x :: τ ′) ` E :: τ
(Abs)

Γ ` λx 7→ E :: τ ′ → τ
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Type inference algorithms

W
W(Γ,E ) = (Ψ, τ)
where

Γ: a type context, mapping variables to types
E: the expression whose type we are to infer
Ψ: a substitution, mapping type variables to types
τ : the inferred type of E

M
M(Γ,E , τ) = Ψ
where

Γ: a type context, mapping variables to types
E: the expression to typecheck
τ : the expected type of E
Ψ: a substitution, mapping type variables to types



Type inference algorithms

W
W(Γ,E ) = (Ψ, τ)
where

Γ: a type context, mapping variables to types
E: the expression whose type we are to infer
Ψ: a substitution, mapping type variables to types
τ : the inferred type of E

M
M(Γ,E , τ) = Ψ
where

Γ: a type context, mapping variables to types
E: the expression to typecheck
τ : the expected type of E
Ψ: a substitution, mapping type variables to types



Linearity

W for application

W(Γ,E F ) = (Ψ ◦Ψ2 ◦Ψ1,Ψβ)
where

(Ψ1, τ1) =W(Γ,E )
(Ψ2, τ2) =W(Ψ1Γ,F )
Ψ = U(Ψ2τ1 ∼ τ2 → β)
β new

E F

Γ

Ψ1 Ψ1Γ

Ψ2
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Error messages from W

Input

toUpper :: Char -> Char

not :: Bool -> Bool

foo x = (toUpper x, not x)
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not :: Bool -> Bool

foo x = (toUpper x, not x)

Output from GHC 6.12

foo.hs:1:24:

Couldn’t match expected type ‘Bool’

against inferred type ‘Char’

In the first argument of ‘not’, namely ‘x’

In the expression: not x

In the expression: (toUpper x, not x)
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Error messages from W

Input

toUpper :: Char -> Char

not :: Bool -> Bool

foo x = (toUpper x, not x)

Output from Hugs 98

ERROR "foo.hs":1 - Type error in application

*** Expression : toUpper x

*** Term : x

*** Type : Bool

*** Does not match : Char



Error messages from W

Input

toUpper :: Char -> Char

not :: Bool -> Bool
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Error messages from W

Input

toUpper :: Char -> Char

not :: Bool -> Bool

foo x = (toUpper x, not x)

So where is the error?



Typing λ calculus compositionally

x 6∈ dom Γ α new
(MonoVar)

Γ; {x :: α} ` x :: α

Γ; ∆1 ` E :: τ ′ Γ; ∆2 ` F :: τ ′′
(App)

Γ; ∆ ` E F :: τ

where α new

Ψ = U({∆1,∆2}, {τ ′ ∼ τ ′′ → α})
∆ = Ψ∆1 ∪Ψ∆2

τ = Ψα

Γ; ∆ ` E :: τ (x :: τ ′) ∈ ∆
(Abs)

Γ; ∆ \ x ` λx 7→ E :: τ ′ → τ

Not just an inference system, but also an algorithm:

C

C(Γ,E ) = ∆ ` τ
where

Γ: a type context, mapping variables to types
E: the expression whose type we are to infer
∆: a typing environment, mapping type variables to types
τ : the inferred type of E , provided ∆ holds
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Not linear, compositional!

C for application

Γ; ∆1 ` E :: τ1 Γ; ∆2 ` F :: τ2 (App)
Γ; ∆ ` E F :: τ

where Ψ = U({∆1,∆2}, {τ1 ∼ τ2 → α})
∆ = Ψ∆1 ∪Ψ∆2

τ = Ψα

Γ

E F

∆1 ` τ1 ∆2 ` τ2

∆ ` τ
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Errors from C

Input

toUpper :: Char -> Char

not :: Bool -> Bool

foo x = (toUpper x, not x)

Output from Tandoori

foo.hs:1:8-25:

(toUpper x, not x)

Cannot unify ‘Char’ with ‘Bool’ when unifying ‘x’:

toUpper x not x

Char Bool

x :: Char Bool
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Haskell 98 is more than just λ calculus

I Algebraic data types

I Pattern matching

I Let-polymorphism

I Recursive definitions


Accounted for in Olaf Chitil’s
2001 paper

I Type declarations

I Type class polymorphism

}
Our contribution

I Record data types

I Do-notation

}
Future work
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Ad-hoc polymorphism

Motivating example: equality testing

elem x [] = False

elem x (y:ys) = (x == y) || (elem x ys)

Equality testing has

I the same signature for all types: α→ α→ bool

I different definition for different types

Type classes

Ad-hoc polymorphic variables grouped into type classes
Type of elem: ∀α.Eq α⇒ α→ [α]→ bool
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C with type classes: Cκ

x 6∈ dom Γ α new
(MonoVar)

Γ; {x :: α}

; ∅

` x :: α

Γ; ∆1

; Θ1

` E :: τ ′ Γ; ∆2

; Θ2

` F :: τ ′′
(App)

Γ; ∆

; Θ

` E F :: τ

where α new

Ψ = U({∆1,∆2}, {τ ′ ∼ τ ′′ → α})
∆ = Ψ∆1 ∪Ψ∆2

Θ = ΨΘ1 + ΨΘ2

τ = Ψα

Γ; ∆

; Θ

` E :: τ (x :: τ ′) ∈ ∆
(Abs)

Γ; ∆ \ x

; Θ

` λx 7→ E :: τ ′ → τ



C with type classes: Cκ
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Tandoori

I Tandoori is the implementation of Cκ for a reasonable subset of Haskell
98

I Based on GHC 6.12’s parser and renamer front-end

I Get it from http://gergo.erdi.hu/projects/tandoori/,
available under a BSD license

http://gergo.erdi.hu/projects/tandoori/


Questions?


