Compositional Type Checking

 for Hindley-Milner Type Systems with Ad-hoc PolymorphismDr. Gergő Érdi
http://gergo.erdi.hu/
Supervised by: Péter Diviánszky

Budapest, January 24, 2011.

Typing λ calculus with Hindley-Milner

Syntax

Expression:	$E=$	v	
		$E E$	
		\mid	$\lambda v \mapsto E$
Variable:	$v=$	$f\|x\| y \mid \ldots$	

Typing λ calculus with Hindley-Milner

Syntax

$$
\frac{(x:: \tau) \in \Gamma}{\Gamma \vdash x:: \tau} \quad \text { (MONOVAR) }
$$

$$
\begin{equation*}
\frac{\Gamma \vdash E:: \tau^{\prime} \rightarrow \tau \quad \Gamma \vdash F:: \tau^{\prime}}{\Gamma \vdash E F:: \tau} \tag{App}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\Gamma ;\left(x:: \tau^{\prime}\right) \vdash E:: \tau}{\Gamma \vdash \lambda x \mapsto E:: \tau^{\prime} \rightarrow \tau} \tag{Abs}
\end{equation*}
$$

Type inference algorithms

\mathcal{W}

$\mathcal{W}(\Gamma, E)=(\Psi, \tau)$
where
Γ : a type context, mapping variables to types
E: the expression whose type we are to infer
Ψ : a substitution, mapping type variables to types
τ : the inferred type of E

Type inference algorithms

\mathcal{W}

$\mathcal{W}(\Gamma, E)=(\Psi, \tau)$
where
Γ : a type context, mapping variables to types
E : the expression whose type we are to infer
Ψ : a substitution, mapping type variables to types
τ : the inferred type of E

M

$\mathcal{M}(\Gamma, E, \tau)=\Psi$
where
Γ : a type context, mapping variables to types
E : the expression to typecheck
τ : the expected type of E
Ψ : a substitution, mapping type variables to types

Linearity

\mathcal{W} for application

$$
\mathcal{W}(\Gamma, E F)=\left(\Psi \circ \Psi_{2} \circ \Psi_{1}, \Psi \beta\right)
$$ where

$$
\begin{array}{ll}
\left(\Psi_{1}, \tau_{1}\right) & =\mathcal{W}(\Gamma, E) \\
\left(\Psi_{2}, \tau_{2}\right) & =\mathcal{W}\left(\Psi_{1} \Gamma, F\right) \\
\Psi & =\mathcal{U}\left(\Psi_{2} \tau_{1} \sim \tau_{2} \rightarrow \beta\right) \\
\beta \text { new } &
\end{array}
$$

$$
E \quad F
$$

Linearity

\mathcal{W} for application

$$
\mathcal{W}(\Gamma, E F)=\left(\Psi \circ \Psi_{2} \circ \Psi_{1}, \Psi \beta\right)
$$ where

$$
\begin{array}{ll}
\left(\Psi_{1}, \tau_{1}\right) & =\mathcal{W}(\Gamma, E) \\
\left(\Psi_{2}, \tau_{2}\right) & =\mathcal{W}\left(\Psi_{1} \Gamma, F\right) \\
\Psi & =\mathcal{U}\left(\Psi_{2} \tau_{1} \sim \tau_{2} \rightarrow \beta\right) \\
\beta \text { new } &
\end{array}
$$

Linearity

\mathcal{W} for application

$$
\mathcal{W}(\Gamma, E F)=\left(\Psi \circ \Psi_{2} \circ \Psi_{1}, \Psi \beta\right)
$$ where

$$
\begin{array}{ll}
\left(\Psi_{1}, \tau_{1}\right) & =\mathcal{W}(\Gamma, E) \\
\left(\Psi_{2}, \tau_{2}\right) & =\mathcal{W}\left(\Psi_{1} \Gamma, F\right) \\
\Psi & =\mathcal{U}\left(\Psi_{2} \tau_{1} \sim \tau_{2} \rightarrow \beta\right) \\
\beta \text { new } &
\end{array}
$$

Linearity

\mathcal{W} for application

$$
\mathcal{W}(\Gamma, E F)=\left(\Psi \circ \Psi_{2} \circ \Psi_{1}, \Psi \beta\right)
$$

where

$$
\begin{array}{ll}
\left(\Psi_{1}, \tau_{1}\right) & =\mathcal{W}(\Gamma, E) \\
\left(\Psi_{2}, \tau_{2}\right) & =\mathcal{W}\left(\Psi_{1} \Gamma, F\right) \\
\Psi & =\mathcal{U}\left(\Psi_{2} \tau_{1} \sim \tau_{2} \rightarrow \beta\right) \\
\beta \text { new } &
\end{array}
$$

Linearity

\mathcal{W} for application

$$
\mathcal{W}(\Gamma, E F)=\left(\Psi \circ \Psi_{2} \circ \Psi_{1}, \Psi \beta\right)
$$

where

$$
\begin{array}{ll}
\left(\Psi_{1}, \tau_{1}\right) & =\mathcal{W}(\Gamma, E) \\
\left(\Psi_{2}, \tau_{2}\right) & =\mathcal{W}\left(\Psi_{1} \Gamma, F\right) \\
\Psi & =\mathcal{U}\left(\Psi_{2} \tau_{1} \sim \tau_{2} \rightarrow \beta\right) \\
\beta \text { new } &
\end{array}
$$

Error messages from \mathcal{W}

Input

toUpper : : Char \rightarrow Char not :: Bool -> Bool
foo x = (toUpper x, not x)

Error messages from \mathcal{W}

Input

toUpper :: Char \rightarrow Char
not :: Bool -> Bool
foo $\mathrm{x}=$ (toUpper x , not x)

Output from GHC 6.12

foo.hs:1:24:
Couldn't match expected type 'Bool' against inferred type 'Char'
In the first argument of 'not', namely ' x '
In the expression: not x
In the expression: (toUpper x , not x)

Error messages from \mathcal{W}

Input

toUpper :: Char \rightarrow Char
not :: Bool -> Bool
foo $\mathrm{x}=($ (toUpper x , not x)

Output from GHC 6.12

foo.hs:1:24:
Couldn't match expected type 'Bool'
against inferred type 'Char'
In the first argument of 'not', namely ' x '
In the expression: not x
In the expression: (toUpper x , not x)

Error messages from \mathcal{W}

Input

```
toUpper :: Char -> Char
not :: Bool -> Bool
foo x = (toUpper x, not x)
```


Output from Hugs 98

```
ERROR "foo.hs":1 - Type error in application
*** Expression : toUpper x
*** Term
    : x
*** Type : Bool
*** Does not match : Char
```


Error messages from \mathcal{W}

Input

```
toUpper :: Char -> Char
not :: Bool -> Bool
foo x = (toUpper x, not x)
```


Output from Hugs 98

```
ERROR "foo.hs":1 - Type error in application
*** Expression : toUpper x
*** Term
    : x
*** Type : Bool
*** Does not match : Char
```


Error messages from \mathcal{W}

Input

toUpper :: Char \rightarrow Char
not : : Bool -> Bool
foo $x=($ toUpper x, not x)

So where is the error?

Typing λ calculus compositionally

$$
\begin{gather*}
\frac{x \notin \operatorname{dom} \Gamma \quad \alpha \text { new }}{\Gamma ;\{x:: \alpha\} \vdash x:: \alpha} \quad \text { (MonoVAR) } \\
\frac{\Gamma ; \Delta_{1} \vdash E:: \tau^{\prime} \quad \Gamma ; \Delta_{2} \vdash F:: \tau^{\prime \prime}}{\Gamma ; \Delta \vdash E F:: \tau} \tag{App}
\end{gather*}
$$

where

$$
\begin{align*}
& \quad \alpha \text { new } \\
& \Psi=\mathcal{U}\left(\left\{\Delta_{1}, \Delta_{2}\right\},\left\{\tau^{\prime} \sim \tau^{\prime \prime} \rightarrow \alpha\right\}\right) \\
& \begin{array}{c}
\Delta \\
=\Psi \Delta_{1} \cup \Psi \Delta_{2} \\
\tau=\Psi \alpha \\
\frac{\Gamma ; \Delta \vdash E:: \tau \quad\left(x:: \tau^{\prime}\right) \in \Delta}{\Gamma ; \Delta \backslash x \vdash \lambda x \mapsto E:: \tau^{\prime} \rightarrow \tau}
\end{array}
\end{align*}
$$

Typing λ calculus compositionally

$$
\begin{gather*}
\frac{x \notin \operatorname{dom} \Gamma \quad \alpha \text { new }}{\Gamma ;\{x:: \alpha\} \vdash x:: \alpha} \quad(\text { MonoVAR }) \\
\frac{\Gamma ; \Delta_{1} \vdash E:: \tau^{\prime} \quad \Gamma ; \Delta_{2} \vdash F:: \tau^{\prime \prime}}{\Gamma ; \Delta \vdash E F:: \tau} \quad(\mathrm{APP}) \\
\frac{\Gamma ; \Delta \vdash E:: \tau \quad\left(x:: \tau^{\prime}\right) \in \Delta}{\Gamma ; \Delta \backslash x \vdash \lambda x \mapsto E:: \tau^{\prime} \rightarrow \tau} \quad(\mathrm{ABS}) \tag{Abs}
\end{gather*}
$$

Not just an inference system, but also an algorithm:

C

$C(\Gamma, E)=\Delta \vdash \tau$ where
Γ : a type context, mapping variables to types
E : the expression whose type we are to infer
Δ : a typing environment, mapping type variables to types
τ : the inferred type of E, provided Δ holds

Not linear, compositional!

C for application

$$
\frac{\Gamma ; \Delta_{1} \vdash E:: \tau_{1} \quad \Gamma ; \Delta_{2} \vdash F:: \tau_{2}}{\Gamma ; \Delta \vdash E F:: \tau} \quad \text { (APP) }
$$

where $\quad \Psi=\mathcal{U}\left(\left\{\Delta_{1}, \Delta_{2}\right\},\left\{\tau_{1} \sim \tau_{2} \rightarrow \alpha\right\}\right)$

$$
\Delta=\Psi \Delta_{1} \cup \Psi \Delta_{2}
$$

$$
\tau=\Psi_{\alpha}
$$

$E \quad F$

Not linear, compositional!

C for application

$$
\frac{\Gamma ; \Delta_{1} \vdash E:: \tau_{1} \quad \Gamma ; \Delta_{2} \vdash F:: \tau_{2}}{\Gamma ; \Delta \vdash E F:: \tau} \quad(\mathrm{APP})
$$

where $\quad \Psi=\mathcal{U}\left(\left\{\Delta_{1}, \Delta_{2}\right\},\left\{\tau_{1} \sim \tau_{2} \rightarrow \alpha\right\}\right)$

$$
\begin{aligned}
\Delta & =\Psi \Delta_{1} \cup \Psi \Delta_{2} \\
\tau & =\psi_{\alpha}
\end{aligned}
$$

Not linear, compositional!

C for application

$$
\frac{\Gamma ; \Delta_{1} \vdash E:: \tau_{1} \quad \Gamma ; \Delta_{2} \vdash F:: \tau_{2}}{\Gamma ; \Delta \vdash E F:: \tau} \quad \text { (APP) }
$$

where $\quad \Psi=\mathcal{U}\left(\left\{\Delta_{1}, \Delta_{2}\right\},\left\{\tau_{1} \sim \tau_{2} \rightarrow \alpha\right\}\right)$

$$
\begin{aligned}
\Delta & =\Psi \Delta_{1} \cup \Psi \Delta_{2} \\
\tau & =\psi_{\alpha}
\end{aligned}
$$

Not linear, compositional!

C for application

$$
\frac{\Gamma ; \Delta_{1} \vdash E:: \tau_{1} \quad \Gamma ; \Delta_{2} \vdash F:: \tau_{2}}{\Gamma ; \Delta \vdash E F:: \tau} \quad(\mathrm{APP})
$$

where $\quad \Psi=\mathcal{U}\left(\left\{\Delta_{1}, \Delta_{2}\right\},\left\{\tau_{1} \sim \tau_{2} \rightarrow \alpha\right\}\right)$

$$
\begin{aligned}
\Delta & =\Psi \Delta_{1} \cup \Psi \Delta_{2} \\
\tau & =\Psi \alpha
\end{aligned}
$$

Errors from C

Input

```
toUpper :: Char -> Char
not :: Bool -> Bool
foo x = (toUpper x, not x)
```


Output from Tandoori

foo.hs:1:8-25:
(toUpper x , not x)
Cannot unify 'Char' with 'Bool' when unifying ' x ':
toUpper x not x
Char Bool
x :: Char Bool

Errors from C

Input

```
toUpper :: Char -> Char
not :: Bool -> Bool
foo x = (toUpper x, not x)
```


Output from Tandoori

```
foo.hs:1:8-25:
```

(toUpper x, not x)

Cannot unify 'Char' with 'Bool' when unifying ' x ':
toUpper x not x
Char Bool
x : : Char Bool

Errors from C

Input

```
toUpper :: Char -> Char
not :: Bool -> Bool
foo x = (toUpper x, not x)
```


Output from Tandoori

foo.hs:1:8-25:
(toUpper x , not x)
Cannot unify 'Char' with 'Bool' when unifying ' x ':
toUpper x not x
Char Bool
x : : Char Bool

Haskell 98 is more than just λ calculus

- Algebraic data types
- Pattern matching
- Let-polymorphism
- Recursive definitions
- Type declarations
- Type class polymorphism
- Record data types
- Do-notation

Haskell 98 is more than just λ calculus

- Algebraic data types
- Pattern matching
- Let-polymorphism
- Recursive definitions

Accounted for in Olaf Chitil's 2001 paper

- Type declarations
- Type class polymorphism
- Record data types
- Do-notation

Haskell 98 is more than just λ calculus

- Algebraic data types
- Pattern matching
- Let-polymorphism
- Recursive definitions

Accounted for in Olaf Chitil's 2001 paper

- Type declarations
- Type class polymorphism $\}$

Our contribution

- Record data types
- Do-notation

Haskell 98 is more than just λ calculus

- Algebraic data types
- Pattern matching
- Let-polymorphism
- Recursive definitions

Accounted for in Olaf Chitil's 2001 paper

- Type declarations
- Type class polymorphism
- Record data types
- Do-notation

Our contribution

Future work

Ad-hoc polymorphism

Motivating example: equality testing

```
elem x [] = False
elem x (y:ys) = (x == y) || (elem x ys)
```


Ad-hoc polymorphism

Motivating example: equality testing

```
elem x [] = False
elem x (y:ys) = (x == y) || (elem x ys)
```

Equality testing has

- the same signature for all types: $\alpha \rightarrow \alpha \rightarrow$ BOOL

Ad-hoc polymorphism

Motivating example: equality testing

$$
\begin{array}{ll}
\text { elem x [] } & =\text { False } \\
\text { elem } x(y: y s) & =(x==y) \|(e l e m x y s)
\end{array}
$$

Equality testing has

- the same signature for all types: $\alpha \rightarrow \alpha \rightarrow$ BOOL
- different definition for different types

Ad-hoc polymorphism

Motivating example: equality testing

```
elem x [] = False
elem x (y:ys) = (x == y) || (elem x ys)
```

Equality testing has

- the same signature for all types: $\alpha \rightarrow \alpha \rightarrow$ BOOL
- different definition for different types

Type classes

Ad-hoc polymorphic variables grouped into type classes Type of elem: $\forall \alpha$.Eq $\alpha \Rightarrow \alpha \rightarrow[\alpha] \rightarrow$ BOOL

Ad-hoc polymorphism

Motivating example: equality testing

```
elem x [] = False
elem x (y:ys) = (x == y) || (elem x ys)
```

Equality testing has

- the same signature for all types: $\alpha \rightarrow \alpha \rightarrow$ BOOL
- different definition for different types

Type classes

Ad-hoc polymorphic variables grouped into type classes Type of elem: $\forall \alpha$.Eq $\alpha \Rightarrow \alpha \rightarrow[\alpha] \rightarrow$ BOOL

C with type classes: C^{k}

$$
\begin{array}{cr}
x \notin \operatorname{dom} \Gamma & \alpha \text { new } \\
\hline \Gamma ;\{x:: \alpha\} & \vdash x:: \alpha
\end{array} \quad(M O N O V A R)
$$

$$
\begin{array}{ccc:c}
\Gamma ; \Delta_{1} & \vdash E:: \tau^{\prime} \quad \Gamma ; \Delta_{2} & \vdash F:: \tau^{\prime \prime} \tag{APP}\\
\hline \Gamma ; \Delta & \vdash E F:: \tau
\end{array}
$$

where $\quad \alpha$ new

$$
\begin{align*}
& \Psi=\mathcal{U}\left(\left\{\Delta_{1}, \Delta_{2}\right\},\left\{\tau^{\prime} \sim \tau^{\prime \prime} \rightarrow \alpha\right\}\right) \\
& \Delta=\Psi \Delta_{1} \cup \Psi \Delta_{2} \\
& \tau=\Psi_{\alpha} \\
& \Gamma ; \Delta \quad \vdash E:: \tau \quad\left(x:: \tau^{\prime}\right) \in \Delta \tag{ABS}\\
& \hline \Gamma ; \Delta \backslash x \quad \vdash \lambda x \mapsto E:: \tau^{\prime} \rightarrow \tau
\end{align*}
$$

C with type classes: C^{k}

$$
\frac{x \notin \operatorname{dom} \Gamma \quad \alpha \text { new }}{\Gamma ;\{x:: \alpha\} ; \emptyset \vdash x:: \alpha} \quad \text { (MONOVAR) }
$$

$$
\begin{equation*}
\frac{\Gamma ; \Delta_{1} ; \Theta_{1} \vdash E:: \tau^{\prime} \quad \Gamma ; \Delta_{2} ; \Theta_{2} \vdash F:: \tau^{\prime \prime}}{\Gamma ; \Delta ; \Theta \vdash E F:: \tau} \tag{APP}
\end{equation*}
$$

where $\quad \alpha$ new

$$
\begin{align*}
& \Psi=\mathcal{U}\left(\left\{\Delta_{1}, \Delta_{2}\right\},\left\{\tau^{\prime} \sim \tau^{\prime \prime} \rightarrow \alpha\right\}\right) \\
& \Delta=\Psi \Delta_{1} \cup \Psi \Delta_{2} \\
& \Theta=\Psi \Theta_{1}+\Psi \Theta_{2} \\
& \tau=\Psi \alpha \\
& \Gamma ; \Delta ; \Theta \vdash E:: \tau \quad\left(x:: \tau^{\prime}\right) \in \Delta \tag{ABS}\\
& \hline \Gamma ; \Delta \backslash x ; \Theta \vdash \lambda x \mapsto E:: \tau^{\prime} \rightarrow \tau
\end{align*}
$$

Tandoori

- Tandoori is the implementation of C^{κ} for a reasonable subset of Haskell 98
- Based on GHC 6.12's parser and renamer front-end
- Get it from http://gergo.erdi.hu/projects/tandoori/, available under a BSD license

Questions?

