

Compositional Type Checking

for Hindley-Milner Type Systems with Ad-hoc Polymorphism

Dr. Gergő Érdi http://gergo.erdi.hu/ Supervised by: Péter Diviánszky

Budapest, January 24, 2011.

Typing λ calculus with Hindley-Milner

Typing λ calculus with Hindley-Milner

SyntaxExpression:E = v $\mid E E$ $\mid \lambda v \mapsto E$ Variable: $v = f \mid x \mid y \mid \dots$

$$\frac{(x :: \tau) \in \Gamma}{\Gamma \vdash x :: \tau} \quad (MONOVAR)$$

$$\frac{\Gamma \vdash E :: \tau' \to \tau \quad \Gamma \vdash F :: \tau'}{\Gamma \vdash E F :: \tau} \quad (APP)$$

$$\frac{\Gamma; (x :: \tau') \vdash E :: \tau}{\Gamma \vdash \lambda x \mapsto E :: \tau' \to \tau} \quad (ABS)$$

Type inference algorithms

\mathcal{W}

$$\mathcal{W}(\Gamma, E) = (\Psi, \tau)$$

where

- Γ : a type context, mapping variables to types
- E: the expression whose type we are to infer
- $\Psi\colon$ a substitution, mapping type variables to types
- τ : the inferred type of *E*

Type inference algorithms

\mathcal{W}

$$\mathcal{W}(\Gamma, E) = (\Psi, \tau)$$

where

- Γ : a type context, mapping variables to types
- E: the expression whose type we are to infer
- $\Psi:~$ a substitution, mapping type variables to types
- τ : the inferred type of *E*

\mathcal{M}

$$\mathcal{M}(\Gamma, E, \tau) = \Psi$$

where

- Γ : a type context, mapping variables to types
- E: the expression to typecheck
- τ : the expected type of *E*
- $\Psi:~$ a substitution, mapping type variables to types

$\ensuremath{\mathcal{W}}$ for application

$$\begin{split} \mathcal{W}(\Gamma, E \ F) &= (\Psi \circ \Psi_2 \circ \Psi_1, \Psi \beta) \\ \text{where} \\ (\Psi_1, \tau_1) &= \mathcal{W}(\Gamma, E) \\ (\Psi_2, \tau_2) &= \mathcal{W}(\Psi_1 \Gamma, F) \\ \Psi &= \mathcal{U}(\Psi_2 \tau_1 \sim \tau_2 \rightarrow \beta) \\ \beta \text{ new} \end{split}$$

F

F

$\ensuremath{\mathcal{W}}$ for application

$$\begin{split} \mathcal{W}(\Gamma, E \ F) &= (\Psi \circ \Psi_2 \circ \Psi_1, \Psi \beta) \\ \text{where} \\ (\Psi_1, \tau_1) &= \mathcal{W}(\Gamma, E) \\ (\Psi_2, \tau_2) &= \mathcal{W}(\Psi_1 \Gamma, F) \\ \Psi &= \mathcal{U}(\Psi_2 \tau_1 \sim \tau_2 \rightarrow \beta) \\ \beta \text{ new} \end{split}$$

$\ensuremath{\mathcal{W}}$ for application

$$\begin{split} \mathcal{W}(\Gamma, E \ F) &= (\Psi \circ \Psi_2 \circ \Psi_1, \Psi \beta) \\ \text{where} \\ (\Psi_1, \tau_1) &= \mathcal{W}(\Gamma, E) \\ (\Psi_2, \tau_2) &= \mathcal{W}(\Psi_1 \Gamma, F) \\ \Psi &= \mathcal{U}(\Psi_2 \tau_1 \sim \tau_2 \rightarrow \beta) \\ \beta \text{ new} \end{split}$$

$\ensuremath{\mathcal{W}}$ for application

$$\begin{split} \mathcal{W}(\Gamma, E \ F) &= (\Psi \circ \Psi_2 \circ \Psi_1, \Psi \beta) \\ \text{where} \\ (\Psi_1, \tau_1) &= \mathcal{W}(\Gamma, E) \\ (\Psi_2, \tau_2) &= \mathcal{W}(\Psi_1 \Gamma, F) \\ \Psi &= \mathcal{U}(\Psi_2 \tau_1 \sim \tau_2 \rightarrow \beta) \\ \beta \text{ new} \end{split}$$

$\ensuremath{\mathcal{W}}$ for application

$$\begin{split} \mathcal{W}(\Gamma, E \ F) &= (\Psi \circ \Psi_2 \circ \Psi_1, \Psi \beta) \\ \text{where} \\ (\Psi_1, \tau_1) &= \mathcal{W}(\Gamma, E) \\ (\Psi_2, \tau_2) &= \mathcal{W}(\Psi_1 \Gamma, F) \\ \Psi &= \mathcal{U}(\Psi_2 \tau_1 \sim \tau_2 \rightarrow \beta) \\ \beta \text{ new} \end{split}$$

Error messages from ${\cal W}$

Input

```
toUpper :: Char -> Char
not :: Bool -> Bool
foo x = (toUpper x, not x)
```

Error messages from \mathcal{W}

Input

```
toUpper :: Char -> Char
not :: Bool -> Bool
foo x = (toUpper x, not x)
```

Output from GHC 6.12

```
foo.hs:1:24:
    Couldn't match expected type 'Bool'
        against inferred type 'Char'
    In the first argument of 'not', namely 'x'
    In the expression: not x
    In the expression: (toUpper x, not x)
```

Error messages from \mathcal{W}

Input

```
toUpper :: Char -> Char
not :: Bool -> Bool
foo x = (toUpper x, not x)
```

Output from GHC 6.12

```
foo.hs:1:24:
   Couldn't match expected type 'Bool'
        against inferred type 'Char'
   In the first argument of 'not', namely 'x'
   In the expression: not x
   In the expression: (toUpper x, not x)
```

Error messages from $\mathcal W$

Input

```
toUpper :: Char -> Char
not :: Bool -> Bool
foo x = (toUpper x, not x)
```

Output from Hugs 98

```
ERROR "foo.hs":1 - Type error in application

*** Expression : toUpper x

*** Term : x

*** Type : Bool

*** Does not match : Char
```

Error messages from $\mathcal W$

Input

```
toUpper :: Char -> Char
not :: Bool -> Bool
foo x = (toUpper x, not x)
```

Output from Hugs 98

```
ERROR "foo.hs":1 - Type error in application

*** Expression : toUpper x

*** Term : x

*** Type : Bool

*** Does not match : Char
```

Error messages from ${\cal W}$

Input

```
toUpper :: Char -> Char
not :: Bool -> Bool
foo x = (toUpper x, not x)
```

So where *is* the error?

Typing λ calculus compositionally

$$\frac{x \notin \operatorname{dom} \Gamma \quad \alpha \text{ new}}{\Gamma; \{x :: \alpha\} \vdash x :: \alpha} \quad (\operatorname{MonoVar})$$

$$\frac{\Gamma; \Delta_1 \vdash E :: \tau' \quad \Gamma; \Delta_2 \vdash F :: \tau''}{\Gamma; \Delta \vdash E F :: \tau} \quad (APP)$$

where α new $\Psi = \mathcal{U}(\{\Delta_1, \Delta_2\}, \{\tau' \sim \tau'' \to \alpha\})$ $\Delta = \Psi \Delta_1 \cup \Psi \Delta_2$ $\tau = \Psi \alpha$ $\Gamma; \Delta \vdash E :: \tau \qquad (x :: \tau') \in \Delta$ (Apple)

$$\Gamma; \Delta \setminus x \vdash \lambda x \mapsto E :: \tau' \to \tau$$
(Abs)

Typing λ calculus compositionally

$$\frac{x \notin \operatorname{dom} \Gamma \quad \alpha \text{ new}}{\Gamma; \{x :: \alpha\} \vdash x :: \alpha} \quad (\operatorname{MonoVar})$$

$$\frac{\Gamma; \Delta_{1} \vdash E :: \tau' \quad \Gamma; \Delta_{2} \vdash F :: \tau''}{\Gamma; \Delta \vdash E F :: \tau} \quad (APP)$$

$$\frac{\Gamma; \Delta \vdash E :: \tau \quad (x :: \tau') \in \Delta}{\Gamma; \Delta \setminus x \vdash \lambda x \mapsto E :: \tau' \to \tau} \quad (ABS)$$

Not just an inference system, but also an algorithm:

C

 $C(\Gamma, E) = \Delta \vdash \tau$ where

- Γ: a type context, mapping variables to types
- E: the expression whose type we are to infer
- a typing environment, mapping type variables to types Δ :
- the inferred type of *E*, provided Δ holds τ :

C for application

$$\frac{\Gamma; \Delta_1 \vdash E :: \tau_1 \quad \Gamma; \Delta_2 \vdash F :: \tau_2}{\Gamma; \Delta \vdash E F :: \tau} \quad (APP)$$

where
$$\Psi = \mathcal{U}(\{\Delta_1, \Delta_2\}, \{\tau_1 \sim \tau_2 \rightarrow \alpha\})$$

 $\Delta = \Psi \Delta_1 \cup \Psi \Delta_2$
 $\tau = \Psi \alpha$

E F

C for application

$$\frac{[\Gamma; \Delta_1 \vdash E :: \tau_1 \quad \Gamma; \Delta_2 \vdash F :: \tau_2]}{[\Gamma; \Delta \vdash E F :: \tau]} \quad (APP)$$

where
$$\Psi = \mathcal{U}(\{\Delta_1, \Delta_2\}, \{\tau_1 \sim \tau_2 \to \alpha\})$$

 $\Delta = \Psi \Delta_1 \cup \Psi \Delta_2$
 $\tau = \Psi \alpha$

C for application

$$\frac{\Gamma; \Delta_1 \vdash E :: \tau_1 \quad \Gamma; \Delta_2 \vdash F :: \tau_2}{\Gamma; \Delta \vdash E F :: \tau} \quad (APP)$$

where
$$\Psi = \mathcal{U}(\{\Delta_1, \Delta_2\}, \{\tau_1 \sim \tau_2 \to \alpha\})$$

 $\Delta = \Psi \Delta_1 \cup \Psi \Delta_2$
 $\tau = \Psi \alpha$

C for application

$$\frac{\Gamma; \Delta_1 \vdash E :: \tau_1 \quad \Gamma; \Delta_2 \vdash F :: \tau_2}{\Gamma; \Delta \vdash E F :: \tau} \quad (APP)$$

where
$$\Psi = \mathcal{U}(\{\Delta_1, \Delta_2\}, \{\tau_1 \sim \tau_2 \to \alpha\})$$

 $\Delta = \Psi \Delta_1 \cup \Psi \Delta_2$
 $\tau = \Psi \alpha$

Errors from C

Input

```
toUpper :: Char -> Char
not :: Bool -> Bool
foo x = (toUpper x, not x)
```

Output from Tandoori

```
foo.hs:1:8-25:
(toUpper x, not x)
Cannot unify 'Char' with 'Bool' when unifying 'x':
        toUpper x not x
        Char Bool
x :: Char Bool
```

Errors from C

Input

```
toUpper :: Char -> Char
not :: Bool -> Bool
foo x = (toUpper x, not x)
```

Output from Tandoori

```
foo.hs:1:8-25:
(toUpper x, not x)
Cannot unify 'Char' with 'Bool' when unifying 'x':
        toUpper x not x
        Char Bool
x :: Char Bool
```

Errors from C

Input

```
toUpper :: Char -> Char
not :: Bool -> Bool
foo x = (toUpper x, not x)
```

Output from Tandoori

```
foo.hs:1:8-25:
(toUpper x, not x)
Cannot unify 'Char' with 'Bool' when unifying 'x':
        toUpper x not x
        Char Bool
x :: Char Bool
```

- Algebraic data types
- Pattern matching
- Let-polymorphism
- Recursive definitions
- Type declarations
- Type class polymorphism
- Record data types
- Do-notation

- Algebraic data types
- Pattern matching
- Let-polymorphism
- Recursive definitions
- Type declarations
- Type class polymorphism
- Record data types
- Do-notation

Accounted for in Olaf Chitil's 2001 paper

•	Algebraic data types	١	
	Pattern matching	ļ	Accounted for in Olaf Chitil's 2001 paper
►	Let-polymorphism		
	Recursive definitions	J	
	Type declarations	١	} Our contribution
	Type class polymorphism	}	
	Record data types		

Do-notation

 Algebraic data types Pattern matching Let-polymorphism Recursive definitions 	Accounted for in Olaf Chitil's 2001 paper
Type declarationsType class polymorphism	<pre> Our contribution</pre>
Record data typesDo-notation	} Future work

Ad-hoc polymorphism

Motivating example: equality testing

elem x [] = False elem x (y:ys) = (x == y) || (elem x ys)

elem x [] = False elem x (y:ys) = (x == y) || (elem x ys)

Equality testing has

▶ the same signature for all types: $\alpha \rightarrow \alpha \rightarrow \text{BOOL}$

elem x [] = False elem x (y:ys) = (x == y) || (elem x ys)

Equality testing has

- ▶ the same signature for all types: $\alpha \rightarrow \alpha \rightarrow \text{BOOL}$
- different definition for different types

elem x [] = False elem x (y:ys) = (x == y) || (elem x ys)

Equality testing has

- ▶ the same signature for all types: $\alpha \rightarrow \alpha \rightarrow \text{BOOL}$
- different definition for different types

Type classes

Ad-hoc polymorphic variables grouped into type classes Type of elem: $\forall \alpha. Eq \ \alpha \Rightarrow \alpha \rightarrow [\alpha] \rightarrow \text{BOOL}$

elem x [] = False elem x (y:ys) = (x == y) || (elem x ys)

Equality testing has

- ▶ the same signature for all types: $\alpha \rightarrow \alpha \rightarrow \text{BOOL}$
- different definition for different types

Type classes

Ad-hoc polymorphic variables grouped into type classes Type of elem: $\forall \alpha$. Eq $\alpha \Rightarrow \alpha \rightarrow [\alpha] \rightarrow BOOL$

C with type classes: C^{κ}

$$\frac{x \notin \operatorname{dom} \Gamma \quad \alpha \text{ new}}{\Gamma; \{x :: \alpha\} \quad \vdash x :: \alpha} \quad (\operatorname{MonoVar})$$

$$\frac{\Gamma; \Delta_1 \qquad \vdash E :: \tau' \qquad \Gamma; \Delta_2 \qquad \vdash F :: \tau''}{\Gamma; \Delta \qquad \vdash E F :: \tau} \quad (APP)$$

where
$$\alpha$$
 new

$$\Psi = \mathcal{U}(\{\Delta_1, \Delta_2\}, \{\tau' \sim \tau'' \to \alpha\})$$

$$\Delta = \Psi \Delta_1 \cup \Psi \Delta_2$$

$$\tau = \Psi \alpha$$

$$\frac{\Gamma; \Delta \vdash E :: \tau \quad (x :: \tau') \in \Delta}{\Gamma; \Delta \setminus x \vdash \lambda x \mapsto E :: \tau' \to \tau}$$
(ABS)

C with type classes: C^{κ}

$$\frac{x \notin \operatorname{dom} \Gamma \quad \alpha \text{ new}}{\Gamma; \{x :: \alpha\}; \emptyset \vdash x :: \alpha} \quad (\operatorname{MonoVar})$$

$$\frac{\Gamma; \Delta_1; \Theta_1 \vdash E :: \tau' \quad \Gamma; \Delta_2; \Theta_2 \vdash F :: \tau''}{\Gamma; \Delta; \Theta \vdash E F :: \tau} \quad (APP)$$

where
$$\alpha$$
 new

$$\Psi = \mathcal{U}(\{\Delta_1, \Delta_2\}, \{\tau' \sim \tau'' \to \alpha\})$$

$$\Delta = \Psi \Delta_1 \cup \Psi \Delta_2$$

$$\Theta = \Psi \Theta_1 + \Psi \Theta_2$$

$$\tau = \Psi \alpha$$

$$\frac{\Gamma; \Delta; \Theta \vdash E :: \tau \quad (x :: \tau') \in \Delta}{\Gamma; \Delta \setminus x; \Theta \vdash \lambda x \mapsto E :: \tau' \to \tau} \quad (ABS)$$

- ► Tandoori is the implementation of C^k for a reasonable subset of Haskell 98
- ▶ Based on GHC 6.12's parser and renamer front-end
- Get it from http://gergo.erdi.hu/projects/tandoori/, available under a BSD license

Questions?