
Eötvös Loránd University
Faculty of Informatics
Dept. of Programming Languages
and Compilers

Compositional Type Checking
for Hindley-Milner Type Systems

with Ad-hoc Polymorphism

Dr. Gergő Érdi

Supervisor: Péter Diviánszky

Budapest, 2011

Abstract

Statically typed functional programming languages usually employ a ver-
sion of the Hindley-Milner type system extended with ad-hoc polymorphism.
When the type checker detects an error, it has to report it to the programmer,
to help in fixing the bug. However, usage of algorithmsW andM, commonly
used to type-check languages with Hindley-Milner type systems, can result in
cryptic error messages. We argue that the holistic nature of these algorithms
is a cause of this.

Next, we describe a type checking algorithm originally presented by Olaf
Chitil in 2001, that, by its compositional nature, claims to produce error mes-
sages that are more suitable for human processing — a property that type
systems for imperative programming languages usually have. The main part
of the thesis is extending the compositional algorithm for languages support-
ing ad-hoc polymorphism. A proof of concept implementation is presented
for the Haskell 98 programming language, interfacing the Glasgow Haskell
Compiler.

In conclusion, we present this implementation and ideas for future work.

For Her, the supportive, Him, the ever curious, and Her, my partner in crime.

Contents

Introduction 3

Notations 5

1 The typed lambda calculus 7
1.1 The formal language Λ . 7
1.2 Type systems . 8
1.3 The HM type system . 8
1.4 Observations about HM . 10

2 Let-polymorphism 13
2.1 The Λlet language . 13
2.2 Recursive definitions . 14
2.3 HM type inference for Λlet . 15

3 Type inference for Hindley-Milner type systems 17
3.1 AlgorithmW . 17
3.2 AlgorithmM . 19
3.3 Unification . 21

4 Reporting and explaining type errors 22
4.1 Linearity . 22
4.2 Errors discovered linearly . 23
4.3 A survey of Haskell compilers 23
4.4 Explanation of type judgements 24
4.5 Other aspects of type error reporting 25

5 A compositional type system 26
5.1 Motivation . 26
5.2 Typings . 27

1

5.3 Polymorphic and monomorphic variables 28
5.4 Unification of typings . 29
5.5 Type system C . 29
5.6 Principal typings, C and HM . 34

6 Type class polymorphism 36
6.1 Non-parametric polymorphism 36
6.2 Type classes and instances . 37
6.3 Overloaded and polymorphic types 38
6.4 Inference rules for HMκ . 40
6.5 Algorithms for HMκ . 43

7 Compositional type checking for type class polymorphism 44
7.1 Class predicates in typings . 44
7.2 Inference rules . 46
7.3 Checking for ambiguous class predicates 49

Conclusions 50
Future work . 50

A Implementation notes 51
Using GHC as a basis . 51
High-level design . 51
Known limitations . 52

Bibliography 54

2

Introduction

Software keeps growing larger and more complex, making it harder for us
humans to understand programs enough to be able to reason about them.
On the other hand, the field of software engineering is many decades old by
now, and it’s not unreasonable to expect of it the kind of maturity necessary
to build large systems without it collapsing under its own complexity.

On one end of the validation spectrum, we have formal methods, which
use mathematical logic to prove program correctness. For example, the B
method[1] uses the Hoare-Dijkstra model[2, 3] of predicate transformations
to ensure that the resulting program meets its specification. However, writ-
ing automatically verifiable proofs is an art in itself, requiring intellectual re-
sources that are simply not available for most software development projects.

To make software development practical in the real world, a division of
labour is applied to verification: some program properties are expressed in a
machine-readable way and can thus be enforced by a compiler, while others
are checked by humans using pen and paper proofs or good old hand-waving.
Static typing provides an old and tried way of using so-called type checkers
for ensuring program properties, and various type systems correspond to
different levels of formalness. Milner’s slogan “Well-typed programs don’t
go wrong”[4] is true in general insofar as “rightness” can be expressed in the
given type system, as stated formally by the Curry-Howard isomorphism[5].

The other straightforward way to try attacking increasing software com-
plexity is breaking programs up into manageable chunks. For this approach
to work, the programming language must be so that these parts can be com-
posed into ever larger systems, while also giving a practical way to combine
the results of analysing the individual chunks. Obviously, the success of this
approach is greatly determined by the ways possible for a given part to affect
other parts.

The recent emergence of statically typed, pure functional programming

3

languages is explained in part because they suit these two approaches so
well. Their type systems are usually expressive enough to encode meaningful
program properties, and referential transparency[6] assures a lack of non-
local effects, thus enabling reasonings about parts of programs to be easily
elevated to reasonings about the whole of the program.

But there is a price to pay for expressive type systems, and that price comes
in the form of the mental capacity needed to use type checkers. Understand-
ing the typing constraints in a dependently-typed functional language[7] like
Agda[8], Coq[9] or Epigram[10] is so complicated that interactive tools have
to be used to write well-typed programs. Mainstream functional program-
ming languages like Haskell[11] or Clean[12] use a somewhat less expressive
type system based on several extensions to the Hindley-Milner type system.
One great advantage of these type systems is that they admit not just type
checking, but also type inference.

Users of these programming languages have all encountered error mes-
sages from the type checker, and it is a well-known problem that these error
messages can often be cryptic. Helium[13] is an implementation of the Haskell
language addressing these problems by various heuristics[14].

One explanation of the difficulty of understanding type errors is that these
type systems yield typing constraints that are non-compositional in the sense
that the inferred type of a given expression is not just a function of its subex-
pressions, but is also influenced by the super-expression it appears in. In
2001, a paper by Olaf Chitil [15] presented a compositional approach to typ-
ing expressions in a Hindley-Milner-like type system.

In this thesis, we present an extension to the system described in Chi-
til’s paper that allows for ad-hoc polymorphism, a feature extensively used
in Haskell[16]. We have implemented this type system on top of the Glas-
gow Haskell Compiler[17], and the resulting type checker supports most
of Haskell 98. The implementation is available under the BSD license at
http://gergo.erdi.hu/projects/tandoori/.

4

http://gergo.erdi.hu/projects/tandoori/

Notations

Inference rule systems

We will define and examine a number of inference systems. Here, an inference
system S is understood to be a collection of inference rules that are given in
the form

Statement P (Rule)
Statement Q

where Rule is the name of the rule that indicates, given the statement P , that
the statement Q also holds. A statement R is then inferable in S if there is a
suitable tree of inference rule applications.

Rules can be axioms, meaning the P part is missing. Not all axioms are
given in inference rule form: true statements that are outside the scope of
the examined system are understood to be implicitly inferable. For example,
when discussing type systems, we do not present a formal treatment of ZF
set theory but use predicates like x ∈ X freely.

Rules can also be rule schemas that contain variables. The domain of
a variable is determined by its name and typesetting (see next section); for
example, the rule schema

(TyVar)
Υ ` α

defines inference rules for all type variables α.

Environments

Some inferable statements are about certain properties that follow from some
environment or context. In these cases, we will write

Π ` P

5

for these statements, where Π is the context and P is some other statement
that follows (i.e. inferable) in that context.

Some statements are more about the generation of environments. If it
makes more sense to think of a statement as “the property P holds, and also
yields the environment Π”, we will instead write

P a Π.

In some cases, there is both a context and a resulting environment for
some property P . In these cases, the above notations are combined into

Π ` P a Σ.

Symbols and letters

Most of the symbols and functions used throughout the thesis should be ei-
ther straightforward or defined at its first occurrence. In particular,

• dom f gives the domain of the function or finite mapping f ,

• vars τ is the set of all type variables occurring in τ .

The following table shows the typographical conventions used:

Roman typeface Functions dom

Boldface Elements of expression syntax let . . . in . . .
Slanted typeface Type systems HM, C

Variables x, f
Calligraphic typeface Algorithms W
Small capital typeface Inference rules Abs

(Type) constructors true

Greek small letters Elements of type systems τ , α, θ
Greek capitals Environments Υ, Γ, ∆,Θ

Overline List/vector τ

6

1. The typed lambda calculus

In this chapter, we present a well-known type system for the lambda calculus.
It is described here because several notations and customs are widespread
and thus it is important to present the exact formulation that we’ll use. The
opportunity is also used to review some of the basic properties of the Hindley-
Milner type system.

1.1 The formal language Λ

The variant of the lambda calculus that we’ll explore is lambda calculus with
algebraic datatypes, constructors and pattern matching. Its syntax is pre-
sented in figure 1.1. Note that in this and later presentations, we consider the
list of datatype definitions as given a priori.

Expression: E = v
| c
| E E
| λv 7→ E
| case E of P 7→ E

Pattern: P = v
| c P

Variable: v = f | x | y | . . .
Constructor: c

Figure 1.1: Syntax of our model language Λ

Since in the present work we are only interested in creating a type system
for this language, we omit a formal description of the semantics of Λ and
instead refer the reader to the numerous treatments of the material, e.g. [18].

For brevity’s sake, we’ll exploit the left-associativity of function applica-
tion and right-associativity of λ-abstraction to omit unnecessary parentheses.
Also, λx 7→ λy 7→ E will be abbreviated as λx y 7→ E.

7

We will also assume every variable name to be unique. This can be easily
ensured by appropriate α-conversions.

1.2 Type systems

What we expect of a type system for our language Λ is to statically, that is,
without actually evaluating the expression, catch some class of nonsensical
expressions. In contrast, a dynamic type system is one that only finds seman-
tic contradictions while evaluating the expression in question.

To reason about the semantics of a given λ-expression without evaluating
it, so-called types are attached to it and its subexpressions. A type system is a
set of possible types and a collection of rules governing the way propositions
of the kind “this given expression E has type τ” can be decided.

One can devise several type systems for Λ, differing in two important, and
not at all orthogonal aspects. The first one is the kind of semantic errors that
the type system can catch — the wider the range of detectable errors, the safer
we can be that an expression accepted by the type checker is meaningful. The
second one is the class of semantically correct expressions that the type system
accepts. Ideally, we would want all semantically correct (i.e. meaningful and
converging) expressions to be accepted by the type checker.

To see why there is a conflict between these two requirements, consider the
notorious class of divergent expressions, like the following canonical example[19]:

Ω := (λx 7→ x x) (λx’ 7→ x’ x’)

Of course, given that Turing-completeness[20] is a property of Λ we very
much intend to keep, we cannot hope to detect errors of this kind in general[21].

1.3 The HM type system

The type system we’ll devise for Λ in this chapter is the Hindley-Milner
type system[4]. For example, given the set of datatypes Υ := {bool =

true | false}, this type system can catch the error in the following expression:

E := (λf 7→ f false) true,

8

arising from the usage of x as some function with a domain in bool in the
body of the λ-abstraction, versus supplying a value of type bool for x.

We detect this error by realizing that the expression is a function appli-
cation with left subexpression λx 7→ x false being a function from “func-
tions mapping bools to something else” to that something else (written as
(bool→ α)→ α), and the right subexpression being a value of type bool.

Figure 1.2 gives the syntax and inference rules for the types that we want
the type system HM to assign to λ-expressions. Types are either type vari-
ables like α in the previous example, function types (with a domain type
and a codomain type), or concrete datatypes. Datatypes can also have type
parameters. The function arity in figure 1.2 gives the arity (number of type pa-
rameters) of type constructor T as a natural number, and is understood to use
the information stored in the datatype context Υ that is preserved throughout
the whole type checking process.

Type variable: α
Type constructor: T
Simple type: τ = α

| T τ
| τ → τ

Polymorphic type: σ = ∀α.τ

(TyVar)
Υ ` α

Υ ` τ1, . . . ,Υ ` τn Υ ` arity(T) = n
(TyCon)

Υ ` T τ1 . . . τn

Υ ` τ ′,Υ ` τ
(TyFun)

Υ ` τ ′ → τ

Υ ` τ (∀)
Υ ` ∀α.τ

Figure 1.2: Syntax of and inference rules for valid types of HM

The Hindley-Milner type system, then, is a set of rules for deciding the
validity of expressions. A given expressions E is accepted if it is typeable,
that is, if the propositions Υ ` τ and ∅ ` E :: τ are provable for some τ

9

using the inference rules. We’ll sometimes write ` E :: τ as shorthand for
∅ ` E :: τ .

In this chapter, E is an expression of Λ and τ is a valid type as defined
in figure 1.2. Later, we will extend both Λ and the set of inference rules to
support other features by allowing for somewhat different domains for E and
τ .

Figure 1.3 on the following page shows the inference rules of HM. It uses a
context Γ mapping variables to types to ensure consistent typing of variables.

1.4 Observations about HM

There are several things to note about these rules. The first is that a given
λ-expression can inhabit many types. For example, given the following ex-
pression:

id := λx 7→ x,

the statements “id inhabits the type bool→ bool” and “id inhabits (α→ β)→
(α → β)” and many more are provable. So it is natural to ask: what is the
most general type that a given expression E inhabits? We’ll say that the
polymorphic type σ = ∀α.τ is the principal type of a given expression E if it
fulfils the following requirements:

• It is indeed a correct type of E, i.e. ` E :: τ

• It is a generalisation of every other type: for all τ ′, the statement ` E :: τ ′

holds if and only if τ ′ ∈ inst(σ) (see figure 1.4 for the definition of inst)

It can be shown[22] that any typeable expression E has a unique principal
type (up to renaming type variables and omitting superfluous type variables
from α). For example, the principal type of id is ∀α.α→ α.

The second important thing to note is that some inference rules making up
the system HM (notably, Abs and Inst) are not constructive in the following
sense: consider, for example, the following derivation of the principal type
∀α.(α→ α)→ (α→ α) for the expression λf x 7→ f (f x):

10

(c :: τ) ∈ Υ α = vars τ
(Con)

Γ ` c :: ∀α.τ

(x :: τ) ∈ Γ
(MonoVar)

Γ ` x :: τ

Γ ` E :: σ τ ∈ inst(σ)
(Inst)

Γ ` E :: τ

Γ ` E :: τ ′ → τ Γ ` F :: τ ′ (App)
Γ ` E F :: τ

Γ; (x :: τ ′) ` E :: τ Υ ` τ ′
(Abs)

Γ ` λx 7→ E :: τ ′ → τ

Γ ` E :: τ0
P1 :: τ0 a Γ1 Γ; Γ1 ` E1 :: τ

...
Pn :: τ0 a Γn Γ; Γn ` En :: τ

(Case)
Γ ` case E of P1 7→ E1 . . . Pn 7→ En :: τ

Υ ` τ (VarPat)
x :: τ a (x :: τ)

(c :: σ) ∈ Υ (τ1 → · · · → τn → T τ) ∈ inst(σ)
P1 :: τ1 a Γ1 · · · Pn :: τn a Γn

(ConPat)
c P1 . . . Pn :: T τ a Γ1; . . . ; Γn

Figure 1.3: HM inference rules for Λ

Ψτ = τ ′ dom Ψ = α
τ ′ ∈ inst(∀α.τ)

Figure 1.4: Inference rule for the inst relation

11

Γ2 ` f :: α→ α Γ2 ` x :: α

Γ2 ` f x :: α Γ2 ` f :: α→ α

Γ2 ` f (f x) :: α

Γ1 ` λx 7→ f (f x) :: α→ α

∅ ` λf x 7→ f (f x) :: (α→ α)→ (α→ α)

where

Γ1 = (f :: (α→ α))

Γ2 = Γ1; (x :: α)

As we can see, the derivation is straightforward only once we know a
good choice for Γ1 and Γ2, which corresponds to choosing τ ′ when applying
rule Abs. However, coming up with the correct types when entering a λ-
abstraction is just the problem of type inference that we want to solve!

Fortunately, the situation is not as bad as this circular-looking reasoning
would make one believe, and we will later describe in detail the well-known
algorithmsW andM that implement type inference by solving this problem.

12

2. Let-polymorphism

In this chapter, an important and widespread extension of the language Λ

and its typing rules are presented: recursive, polymorphic let bindings.

2.1 The Λlet language

Figure 2.1 shows syntax extensions of the Λ language presented in figure 1.1,
with the changes highlighted.

Expression: E = v
| c
| E E
| λv 7→ E
| case E of P 7→ E
| let D in E

Definition: D = v P = E
Pattern: P = v | c P
Variable: v = f | x | y | . . .
Constructor: c

Figure 2.1: Syntax of Λlet

The new construct let allows for local function definitions1. This is an
important difference in our definition in contrast to usual treatments of the
subject, which only allow variables to be defined inside a let. Since in this
thesis we intend to arrive at practical results for reporting type errors, we
choose this definition of let that is a lot closer to the facilities offered by real-
life functional programming languages.

Functions are defined using pattern matching on the arguments, like map

1Variables can be defined as functions with no arguments

13

in the following definition, with Υ = {[α] = nil | cons α [α]}:

let map f nil = nil

map f (cons x xs) = cons (f x) (map f xs)

in map.

2.2 Recursive definitions

Recursion, as demonstrated by the previous example of map, is an explicitly
desired property of let, in the sense that local definitions should be able to
refer to themselves.

The following example demonstrates a technique for transforming mutu-
ally recursive definitions into straight recursion by combining the definitions
into a single tuple; both expressions yield the infinite list 〈true, false, true,

false, . . .〉:

Υ := {(α, β) = (α, β), [α] = nil | cons α [α], bool = true | false}

mutual := let tick = cons true tock

tock = cons false tick

in tick

flattened := let proj21 (x, y) = x

proj22 (x, y) = y

in let ticktock = let tick = cons true (proj22 ticktock)

tock = cons false (proj21 ticktock)

in (tick, tock)

in proj21 ticktock

This transformation can be easily automated by detecting mutually recur-
sive definitions (by searching for all strongly connected components of the
variable reference graph). By avoiding mutual recursion, it is also enough to
allow only a single function definition (with multiple patterns, of course) in
one let, because multiple definitions can be transformed into nested lets in
the order determined by the topological sorting of the aforementioned graph.

We will use these observations in later chapters, when detailing type in-

14

ference algorithms for Λlet , by assuming singular recursive definitions in let
without loss of generality, by presuming an appropriate transformation step
before type checking.

2.3 HM type inference for Λlet

Here we extend the type system HM with additional rules to support the new
let construct. First of all, just as the inference rule Case needed the rules
VarPat and ConPat to collect the newly bound variables in a pattern, we
need rules to collect the variables bound in a let:

P1 :: τ1 a Γ1 · · · Pn :: τn a Γn Γ; Γ1; . . . ; Γn ` E :: τ
(Def)

Γ ` f P1 . . . Pn = E a (f :: τ1 → . . .→ τn → τ)

Figure 2.2: Typing rules for collecting let-bound variables

Given the requirement for allowing recursion, the most straightforward
type inference rule one can give for let is to require the newly bound defini-
tions to be typeable in the very context that they define, and type the body of
the let in the same context:

Γ′ = Γ1; . . . ; Γn

Γ; Γ′ ` D1 a Γ1 · · · Γ; Γ′ ` Dn a Γn

Γ; Γ′ ` E :: τ
(MonoLet)

Γ ` let D1 . . . Dn in E :: τ

The actual rule Let, as shown in figure 2.3 on the following page, differs
from this rule because we want let-bound variables to be polymorphic inside
the body of the let. For example, the following expression is not typeable
without let-polymorphism, because the two occurrences of id need to be as-
signed the non-unifiable types bool→ bool and [α]→ [α]:

let id x = x in P (id true) (id nil).

To achieve this, the types of let-bound variables are generalised (by adding
an appropriate ∀ quantifier) in the context of the body. Of course, for poly-
morphic variables to be usable, we also have to add a new inference rule for
polymorphic variables, that mirrors the Con rule, for instantiating polymor-
phic types.

15

(x :: σ) ∈ Γ τ ∈ inst(σ)
(PolyVar)

Γ ` x :: τ

Γ′ = Γ1; . . . ; Γn

Γ; Γ′ ` D1 a Γ1 · · · Γ; Γ′ ` Dn a Γn

Γ′′ = {x :: σ|(x :: τ) ∈ Γ′, σ = gen(Γ, τ)}
Γ; Γ′′ ` E :: τ

(Let)
Γ ` let D1 . . . Dn in E :: τ

Figure 2.3: New typing rules for Λlet

16

3. Type inference for

Hindley-Milner type systems

A type inference algorithm is one that, given an expression E and an initial
environment Γ0, either returns a positive result of a type τ such that Γ0 ` E : τ ,
or a negative result of some error message about E not being typeable. As
an added requirement, we also expect algorithms for HM to return, in the
positive case, the principal type.

Two important properties of type inference algorithms are soundness and
completeness. A given algorithm is sound if its positive answer is always cor-
rect, and it is complete if it returns a negative answer only when the given
expression is not typeable in the given type system.

3.1 AlgorithmW

Milner’s original paper presenting the (let-polymorphic) Hindley-Milner type
system[4] included algorithm W that computes the principal type of a given
expression. The algorithm works by always assigning new type variables to
the parameters of λ-abstractions, and collecting type substitutions on the way.
The type substitutions are generated by solving type constraints arising from
applications. Somewhat later, Damas[23] proved algorithmW to be complete.

The general form ofW is the following:

W(Γ, E)= (Ψ, τ)

where Γ : a type context, mapping variables to types

E : the expression whose type we are to infer

Ψ : a substitution, mapping type variables to types

τ : the inferred type of E

17

Recurrences in the definition ofW always refer to smaller subexpressions;
thus, the definition is well-founded.

We omit the definition ofW for case and let expressions here, and only fo-
cus on the core language of variables, function application and λ-abstraction.

3.1.1 Variables

W(Γ, x)=(∅, τ) if (x :: τ) ∈ Γ

W(Γ, x)=(∅, {α β}τ) if (x :: ∀α.τ) ∈ Γ

where β new

The inference rules for variable occurrences is simply a matter of looking
up the variable in the type context Γ. Variables with polymorphic types are
instantiated differently for every occurrence. Since a variable occurrence, by
itself, imposes no type constraints, no substitution is required.

3.1.2 λ-abstraction

W(Γ, λx 7→ E) = (Ψ,Ψβ → τ)

where (Ψ, τ) =W(Γ; (x :: β), E)

β new

Inferring the type of a λ-abstraction entails inferring the type of its body, us-
ing an extended type context. The variable of the λ-abstraction is inserted
as a monomorphic variable into the context; recall that we assume all vari-
able names to be distinct (by a separate scoping transformation before type
inference), so there can be no conflicts when adding (x :: β) to Γ.

Constraints on the type of the argument can, of course, be imposed by the
body of the λ-abstraction. These constraints ultimately generate substitutions
of the form β τ ′, which is then applied to the left-hand side of the function
type returned byW(Γ, λx 7→ E) to produce the type τ ′ → τ .

18

3.1.3 Function application

W(Γ, E F) = (Ψ ◦Ψ2 ◦Ψ1,Ψβ)

where (Ψ1, τ1) =W(Γ, E)

(Ψ2, τ2) =W(Ψ1Γ, F)

Ψ = U(Ψ2τ1 ∼ τ2 → β)

β new

To infer the type of applying the function E on the operand F , the type of both
E and F needs to be inferred. The compatibility requirement τE ∼ τF → τE F

is a straightforward transliteration of the type inference rule App.
Since both E and F may refer to the same variables, constraints arising

from one can affect the other. This is captured by the fact that W recurses on
F with a modified environment Ψ1Γ. In the next chapter, we shall see how
this is an important point with regards to reporting type errors.

3.2 AlgorithmM

There is no clear origin of algorithm M, another type assignment algorithm
for Hindley-Milner type systems; Lee and Yi presented a formal treatment of
the by-then widespread folklore algorithm in [24], proving its soundness and
completeness. Their paper also proves an advantage of M, which is that M
stops earlier thanW for non-typeable inputs.

The basic idea behind algorithm M is that instead of the M function re-
turning the inferred type of subexpressions, the expected type is passed to it
as an argument. The well-foundedness of the recursion is, again, ensured by
always recursing on smaller subexpressions.

M(Γ, E, τ)= Ψ

where Γ : a type context, mapping variables to types

E : the expression to typecheck

τ : the expected type of E

Ψ : a substitution, mapping type variables to types

19

3.2.1 Variables

The inference rule for variables closely mirrors that of W : the type of the
variable as stored in Γ is checked against the expected type from the function
argument:

M(Γ, x, τ)=U(τ ∼ τ ′) if (x :: τ ′) ∈ Γ

M(Γ, x, τ)=U(τ ∼ {α β}τ ′) if (x :: ∀α.τ ′) ∈ Γ

where β new

3.2.2 λ-abstraction

M(Γ, λx 7→ E, τ) = Ψ2 ◦Ψ1

where Ψ1 = U(τ ∼ α→ β)

Ψ2 =M(Ψ1Γ; (x :: Ψ1α), E,Ψ1β)

α, β new

Since λ-abstractions are always typed as τ1 → τ2, the expected type must
have this schema as well. This is expressed by the first unification step that
deconstructs τ into an argument type α and a result type β. Note that the
results of this unification can impose additional constraints on the type of
variables in Γ, which is why it is the substituted context Ψ1Γ that is extended
before recursing into E.

3.2.3 Function application

M(Γ, E F, τ) = Ψ2 ◦Ψ1

where Ψ1 =M(Γ, E, β → τ)

Ψ2 =M(Ψ1Γ, F,Ψ1β)

β new

For the application E F to have type τ , E must be of some type τ ′ → τ , and
F of type τ ′. This connection between E and F is implemented inM via the
shared type variable β.

20

3.3 Unification

The type constraint solver used by W and M is not at all specific to these
type inference algorithms: a simplified special-case version of the universal
predicate resolution algorithm described in [25] is used to calculate the most
generic unifier for a set of type equations of the form τ ∼ τ ′. Figure 3.1 shows
the definition of U ; this function is shared by all type inference algorithms
presented here, including the compositional algorithm introduced in chapter
5.

Note that although the set of equations can grow when recursing, there
is a simple tree measure of types with which the total measure of the set of
equations is always strictly decreasing, thus ensuring well-foundedness.

U(∅) = ∅

U({α ∼ α} ∪Σ) = U(Σ)

U({α ∼ τ} ∪Σ) =

error: Infinite type if α ∈ vars τ

U(ΨΣ) ◦Ψ otherwise

where Ψ = {α τ}

U({τ ∼ α} ∪Σ) = U({α ∼ τ} ∪Σ)

U({τ → u ∼ τ ′ → u′} ∪Σ) = U(Σ ∪ {τ ∼ τ ′, u ∼ u′})

U({T τ1 . . . τn ∼ T τ ′1 . . . τ
′
n} ∪Σ) = U(Σ ∪ {τ1 ∼ τ ′1, . . . , τn ∼ τ ′n})

U({τ ∼ τ ′} ∪Σ) = error: Contradicting constraints

Figure 3.1: Calculating a most generic unifier

21

4. Reporting and explaining

type errors

In this chapter, we take a brief detour to analyse the error reporting capabili-
ties of W and M. Problems discovered here will serve as our motivation for
a compositional type system in the next chapter.

4.1 Linearity

Both W and M infer the type of composite expressions by inferring one
subexpression (in some sense, the “first” one) and using its results in inferring
the type of the next one. They are linear in the sense that partial results are
threaded throughout the type inference.

For example, recall the definition ofW for applications:

W(Γ, E F) = (Ψ ◦Ψ2 ◦Ψ1,Ψβ)

where (Ψ1, τ1) =W(Γ, E)

(Ψ2, τ2) =W(Ψ1Γ, F)

Ψ = U(Ψ2τ1 ∼ τ2 → β)

β new

It first recurses on the left-hand expression E in context Γ, and then uses
the result of this inference, Ψ1, to recurse on F . If E and F are both well-
typed, but there is a contradiction between the two (by e.g. not agreeing on
the type of a variable in Γ), this error will always be discovered, and reported,
as a fault with F , even though F would be well-typed by itself.

22

4.2 Errors discovered linearly

The effect of linearity on type inference is that certain subexpressions (those
that are processed earlier) can have greater influence on the typing of other
subexpressions. This is bad because it imposes a hierarchy on the subexpres-
sions that is determined solely by the actual type checking algorithm, not
by the type system; thus, it can lead to misleading error messages for the
programmer.

For example, consider the following program:

Υ := { (α, β) = (α, β),

char = ‘A’ | . . . | ‘Z’ | ‘a’ | . . . | ‘z’,

bool = true | false}

Γ0 := {toUpper :: char→ char, not :: bool→ bool}

test := λ x 7→ (toUpper x, not x)

The critical part is the application of ((· , ·) (toUpper x)) on (not x). W
will first assign some type variable α to x, then solve the type equation
α ∼ char generated by toUpper x, yielding the substitution α char. This
leads to Γ′ = {x :: char} going into the second part of the tuple, generating
the unsolvable type equation char ∼ bool. Thus, the second part, not x, is
what is reported to be not well-typed.

We could have changed the order in whichW traverses the subexpressions
of function application (and as we’ll see below, some implementations use
this order), but that would have merely resulted in entering toUpper x with
Γ′ = {x :: bool}, resulting in the unsolvable type equation bool ∼ char.

4.3 A survey of Haskell compilers

Below is the output of some popular Haskell compilers demonstrating the
above, when trying to compile the following program:

test x = (toUpper x, not x)

All three of them correctly discover the type error, but they all report it as
though it would be a problem with one of the parts of the tuple per se, not the

23

combining of the two.

• GHC[17] 6.12: The subexpression toUpper x is processed first. The
error message shows x to be typed char.

Couldn’t match expected type ‘Bool’

against inferred type ‘Char’

In the first argument of ‘not’, namely ‘x’

In the expression: not x

In the expression: (toUpper x, not x)

• Hugs 98[26] seems to process application in the reversed order: not x

is checked first, leading to an error in toUpper x:

ERROR "test.hs":1 - Type error in application

*** Expression : toUpper x

*** Term : x

*** Type : Bool

*** Does not match : Char

• Helium[13] 1.6 gives the same result as GHC above. The output is more
verbose, showing the inferred type of both the applied expression and
the argument; but otherwise it presents the same judgement that the
expression not x is at fault by itself.

(1,29): Type error in application

expression : not x

function : not

type : Bool -> Bool

1st argument : x

type : Char

does not match : Bool

4.4 Explanation of type judgements

When the programmer is presented with an error message from the type
checker, fixing the problem requires understanding the result of the type
inference. The problem with linear type inference algorithms is that type
judgements for subexpressions cannot be explained without reference to other
subexpressions.

Presented with the above error messages, the programmer might wonder
why the expression not x is not well-typed. It certainly looks well-typed by

24

itself. Also, there is no apparent reason for the judgement x :: char, referred
to in the error messages. Focusing on not x, the expression where the error is
reported, gives no insight on the underlying problem.

Showing the programmer the type context Γ = {x :: char} is not of
much help, either. While it does explain the source of the type equation
char ∼ bool, the programmer is still left out in the cold about the actual
problem: with this Γ, it is trivial to see that not x is not well-typed, but this
only leads to frustration because now it is clear that the problem stems not
from the expression reported by the type checker as the source of the error.

4.5 Other aspects of type error reporting

Of course, there are many kinds of type errors and many possible presen-
tations of them. Here, we have focused on examples where linearity is of
great hindrance, because this is what we intend to fix; [15] gives another great
example.

As for possible improvements of type checkers for HM, [14] presents a
thorough overview of the challenges and solutions of reporting good type
error messages while staying inside the conceptual framework of HM, and
thus, linearity.

25

5. A compositional type system

In this chapter, we present an alternative type system for the Λlet language.
Its main distinguishing property is that it allows for a compositional type
checking algorithm, in contrast to the linear nature of W and M. As we’ll
see, this can remedy some of the problems discussed in the previous chapter.

We define here a compositional type system as one where the type of
subexpressions is not dependent on other expressions that are either above or
beside it. Of course, this cannot be achieved in the framework of the Hindley-
Milner type system; for example, consider the following expression:

let id x = x in id true,

in which the type of the marked occurrence of id is very much determined by
the type of its sibling expression true. Hence the need for not just another
algorithm, but a whole alternative type system.

5.1 Motivation

A compositional type system assigns types to expressions independent of
their surrounding. Following up on our previous example presented in chap-
ter 4:

Υ := { (α, β) = (α, β),

char = ‘A’ | . . . | ‘Z’ | ‘a’ | . . . | ‘z’,

bool = true | false}

Γ0 := {toUpper :: char→ char, not :: bool→ bool}

test := λ x 7→ (toUpper x, not x),

26

we expect a compositional type system to assign meaningful results to the
subexpressions toUpper x and not x, since both of these are well-typed by them-
selves. Using this information, the programmer can then realize that the real
cause of the error is ununifiable view of the two expressions on what the type
of x should be; the programmer can then see both views and then decide how
to fix the problem.

Our implementation of the type system described in this chapter outputs
the following error message for the program above:

input/test.hs:1:8-25:

(toUpper x, not x)

Cannot unify ‘Char’ with ‘Bool’ when unifying ‘x’:

toUpper x not x

Char Bool

x :: Char Bool

Note that the type of toUpper x and not x is correctly inferred despite the
problems with assigning a type to x; this enables type checking to go on,
finding other problems in the same run.

5.2 Typings

The key to our compositional type system is the notion of typings[27]. A
typing captures all of the constraints imposed by an expression on its envi-
ronment. For example, for the expression f x y to be well-typed, we need f to
be a binary function, and the type of its arguments must match that of x and
y:

Type of expression: f x y :: γ

Constraints on variables: f :: α→ β → γ

x :: α

y :: β

We defined Λlet to only allow simple recursion: when an expression refer-
ences a variable, it is either a function argument, a previously defined func-
tion, or a recursive reference. The type of functions already defined cannot
be changed by a usage site, so that case yields no constraints, and function
arguments and recursive references are monomorphic. This means that the
typing of an expression contains constraints only on the type of monomorphic
variables.

27

Using the notation of [15], a typing, written ∆ ` τ , consists of a type envi-
ronment ∆ = {x :: τ1, y :: τ2, . . .} mapping variables to monomorphic types,
and a type τ . Our previous example f x y thus has typing {f :: α → β → γ,

x :: α, y :: β} ` γ.

5.3 Polymorphic and monomorphic variables

As we have previously seen, the type environment part of a typing contains
only monomorphic variables. Let-bound variables, however, are polymorphic,
and only the type of their specific occurrence can be influenced by a usage site.

Thus, we split the variables into two groups: polymorphic and monomor-
phic. Polymorphic variables are associated with a typing, and that typing is
instantiated at usage sites, yielding no additional constraints except those in
the typing itself. Monomorphic variables are associated with a monomorphic
type, and all usage sites of a monomorphic variable must agree on its type.

The type of polymorphic variables is stored in the polymorphic environ-
ment Γ = {f 7→ ∆ ` τ, . . .}; this environment is extended by bindings in let
expressions. Monomorphic variables are stored in the monomorphic envi-
ronment ∆ = {x :: τ ′, . . .}. This environment is extended by every variable
occurrence, and every expression unifies the monomorphic environments of
its subexpressions.

Why do we need to store typings in the polymorphic environment instead
of just types? It is because the definition of a let-bound variable can refer to
monomorphic variables, and thus its usage can impose additional constraints.
Consider the following example:

Υ := {char = . . . , bool = . . . , (α, β) = . . . , [α] = . . .}

Γ0 := {map 7→ ∅ ` (α→ β)→ [α]→ [β], toUpper 7→ . . . , not 7→ . . .}

test := λ xs 7→ let xform f = map f xs

in (xform toUpper, xform not)

The typing of xform after the generalisation is {xs :: [α]} ` (α → β) → [β]}.
This typing can be instantiated to both {xs :: [char]} ` (char → γ) → [γ]
and {xs :: [bool]} ` (bool→ δ)→ [δ] for the two usages, and both maintain
a constraint on the type of the monomorphic variable xs.

28

This also eliminates the need for explicit ∀ quantification, because every
type variable is renamable in a typing. The difference between a polymorphic
and a monomorphic variable is that the latter contains itself in its typing, thus,
its instantiated typing will still be monomorphic.

In the example above, the monomorphic type environment of xform con-
tains types in which α occurs, thus, it is not polymorphic in α. This is wit-
nessed by the fact that all usages of xform must agree on the specific instanti-
ation of α, but not on β.

5.4 Unification of typings

By now, it should be clear that the crucial step in the type system we’re de-
scribing is the unification of typings. We extend the unification algorithm
from chapter 3 by allowing an additional parameter consisting of a list of
monomorphic environments ∆1, . . . ,∆n. Since monomorphic type environ-
ments must agree on the type of all variables involved, from this list we gen-
erate a set of type equations expressing this desired congruity:

U({∆1, . . . ,∆n}, Σ) = U(Σ ′ ∪Σ)

where Σ ′ = {α(x) ∼ ∆i(x) | i = 1 . . . n, x ∈ dom ∆i, α(x) new}

5.5 Type system C

The type system C we present here is a type system for Λlet based on [15].
Contrary to HM, it is constructive; thus, its inference rules can also be read
as an algorithm, with judgement Γ; ∆ ` E :: τ interpreted as a function
mapping the pair of a polymorphic context and an expression (Γ, E) to a
typing ∆ ` τ . Since the predicates of the inference rules always refer to
smaller expressions, the recursion defined by this reading of the inference
rules is not well-founded.

We make no claims about the performance of C as a type inference algo-
rithm. If performance turns out to be poor in real-world applications, one can
run one of either M or W to see if there are any type errors, and then run C
only when errors are found.

29

5.5.1 Constants and variables

Constructors impose no constraints on monomorphic variables. References
to previously defined, and thus polymorphic variables import the respective
monomorphic type environment. We instantiate typings by consistently re-
naming type variables into fresh ones.

(c :: τ) ∈ Υ ∅ ` τ ′ = inst ∅ ` τ
(Con)

Γ; ∅ ` c :: τ ′

Γ(x) = ∆ ` τ ∆′ ` τ ′ = inst ∆ ` τ
(PolyVar)

Γ; ∆′ ` x :: τ ′

Monomorphic variables are those that have no associated typings in the
polymorphic type environment Γ. Such occurrences are typed by recording
the newly-introduced monomorphic variable in ∆.

x 6∈ dom Γ α new
(MonoVar)

Γ; {x :: α} ` x :: α

Note that this formulation doesn’t detect out-of-scope references. Scope
checking is assumed to have been done in a previous pass, because it is al-
ready needed to flatten out let declarations into non-mutually-recursive par-
titions.

5.5.2 λ-abstraction

The variable of a λ-abstraction is monomorphic in the abstraction’s body. This
means the polymorphic context Γ is not extended by the argument variable
before descending into the body; instead, the type of the λ-abstraction is de-
termined by looking at the monomorphic type of the variable from the typing
of the body.

30

Γ; ∆ ` E :: τ (x :: τ ′) ∈ ∆
(Abs)

Γ; ∆ \ x ` λx 7→ E :: τ ′ → τ

Γ; ∆ ` E :: τ x 6∈ dom ∆ α new
(Abs

′)
Γ; ∆ ` λx 7→ E :: α→ τ

The two cases correspond to λ-abstractions with and without references to
their argument. In the former case, the argument variable is removed from
the typing of the body in the resulting typing, since different usages of the
same λ-abstraction don’t have to agree on the argument type.

Consider the following example:

Υ := {bool = . . . , (α, β) = . . . , [α] = . . .}

idPair := let id = λx 7→ x in (id true, id nil).

The inferred typing of x is {x :: α} ` α; thus, the typing of id would be
{x :: α} ` α → α if x wasn’t removed from the monomorphic environment.
This would lead to the contradicting typings {x :: bool} ` id true :: bool

and {x :: [β]} ` id nil :: [β]; in effect, losing let-polymorphism.

5.5.3 Function application

The inference rule for function application consists simply of inferring the
typing of the function and the argument, and unifying the two. However,
behind this simplicity lies compositionality: unlike HM, there is no direction-
ality and no flow of information between the descendings into E and F .

Γ; ∆1 ` E :: τ ′ Γ; ∆2 ` F :: τ ′′
(App)

Γ; ∆ ` E F :: τ

where α new

Ψ = U({∆1,∆2}, {τ ′ ∼ τ ′′ → α})

∆ = Ψ∆1 ∪Ψ∆2

τ = Ψα

The combining operator ∆ ∪∆′ is defined to be a union of two monomor-

31

phic environments, provided they agree on their common monomorphic vari-
ables. Here, the two results ∆1 and ∆2 are combined using the unifier substi-
tution Ψ, ensuring that Ψ∆1 and Ψ∆2 agree on their intersection.

5.5.4 Case expressions

The inference rule for case expressions is pretty straightforward. Patterns
generate monomorphic type environments to allow for the necessary connec-
tion between patterns and cases. Note that variables defined in patterns don’t
leak out; this is necessary for the same reason we removed the argument
variable from the typing of λ-abstractions.

Γ; ∆0 ` E :: τ0

∆′
1 ` P1 :: τ ′1 Γ; ∆1 ` E1 :: τ1

...
∆′
n ` Pn :: τ ′n Γ; ∆n ` En :: τn

(Case)
Γ; ∆ ` case E of P1 7→ E1 . . . Pn 7→ En :: τ

where α new

Ψ = U({∆0,∆1,∆
′
1, . . . ,∆n,∆

′
n}, {τ0 ∼ τ ′i , τi ∼ α | i = 1 . . . n})

∆ = Ψ∆0 ∪
n⋃
i=1

(Ψ∆i \ dom ∆′
i)

τ = Ψα

The inference rules for patterns is basically the same as for their counter-
parts in expressions. The differences arise only because pattern-bound vari-
ables are always monomorphic, and because constructor patterns have to be
fully applied.

32

α new (VarPat)
{x :: α} ` x :: α

(c :: τ1 → · · · → τn → T τ) ∈ Υ

∆1 ` P1 :: τ ′1 · · · ∆n ` Pn :: τ ′n
(ConPat)

∆ ` c P1 . . . Pn :: Ψ(T τ)

where Ψ = U({∆1, . . . ,∆n}, {τ1 ∼ τ ′1, . . . , τn ∼ τ ′n})

∆ = Ψ∆1 ∪ · · · ∪Ψ∆n

5.5.5 Let bindings

The key step in the inference rule for let is the construction of the monomor-
phic environment Ψ∆′∪Ψ∆0. Each definition is typechecked separately, using
the original polymorphic environment. As we’ve shown before, this ensures
monomorphic recursion by collecting recurrence constraints in ∆1 . . .∆n. The
substitution Ψ0 unifies the view on both the recurrence’s type, and other, ex-
ternal monomorphic variables (e.g. from an enclosing λ-abstraction).

Γ; ∆1 ` f P 1 = E1

...
Γ; ∆n ` f P n = En

Γ′; ∆′ ` E :: τ
(Let)

Γ; ∆ ` let f P 1 = E1 · · · f P n = En in E :: Ψτ

where α new

Ψ0 = U({∆1, . . . ,∆n}, {∆i(f) ∼ α | i = 1 . . . n}

∆0 =
n⋃
i=1

Ψ∆i \ {f}

Γ′ = Γ; {f 7→ ∆0 ` Ψ0α}

Ψ = U({∆0,∆
′})

∆ = Ψ∆′ ∪Ψ∆0

The newly-introduced variable f is removed from the resulting environ-
ment, leading to let-polymorphism as we have seen previously.

33

The inference rule for individual definitions forces the inclusion of the
currently-defined variable in the monomorphic environment, to communicate
the type of the right-hand sides of the equations even when no recursion
occurs.

∆1 ` P1 :: τ1
...

∆n ` Pn :: τn

Γ,∆′ ` E :: τ0
(Def)

Γ; ∆ ` f P1 · · ·Pn = E

where ∆0 = {f :: τ1 → . . .→ τn → τ0}

Ψ = U({∆0,∆1, . . . ,∆n,∆
′})

∆ = (Ψ∆0 ∪Ψ∆′) \
n⋃
i=1

dom ∆i

The absence of mutual recursion, and the restriction of one variable bind-
ing per let are exploited only to simplify the formal statement of the inference
rule; the above definition is easily adaptable for languages like Haskell that
directly permit mutual recursion.

5.6 Principal typings, C and HM

Previously, when discussing type judgements of the form ` E :: τ , we saw
that a given expression can inhabit many types. The same holds for typ-
ings as well: {f :: bool→ [bool]→ char, x :: bool, y :: [bool]} ` char is
a perfectly valid typing for f x y.

Principal typings are defined in such a way as to relate C to HM: given an
expression E and a polymorphic environment Γ, we say ∆ ` τ is principal if

• It is a correct typing of E, that is, Γ; ∆ ` E :: τ

• Every other, HM-correct typing is just a substitution away: if (Γ′)∀ ∪∆′ `HM

E :: τ ′, then there exists a substitution Ψ such that ∆′ = Ψ∆ and
τ ′ = Ψτ . Here, (Γ)∀ denotes the polymorphic HM-environment cre-
ated from a C environment by adding appropriate ∀-qualifiers to every
type.

34

The algorithm directly constructible from C computes principal typings.
Because of the definition of principal typings, a corollary of this is that every
expression typeable in the system HM is also typeable in C ([28] via [15]).

35

6. Type class polymorphism

In this chapter we extend HM with overloaded functions in the form of type
classes. This extended type system HMκ is a suitably close model of the type
system of the Haskell 98 language. The next chapter presents the changes to
the compositional type system C to support HMκ in the same way vanilla C
supports HM.

6.1 Non-parametric polymorphism

The polymorphic expressions we’ve seen in previous chapters had no way
of depending on the actual types involved at a usage site. The polymorphic
function map defined in section 2.1 on page 14, of type ∀α, β.(α→ β)→ [α]→
[β], acts in the same way for any choice of α and β.

However, sometimes it is desirable to reuse names without reusing defini-
tions. For example, it is very convenient to have a function (≡) :: α → α →
bool that means different things depending on the actual types involved, so
that we can use it as x ≡ ’a’ or map f y ≡ nil, but define it differently for
characters and lists.

Overloaded functions like (≡) allow for generic definitions like the follow-
ing:

elem := let elem x nil = false

elem x (cons y ys) = (x ≡ y) ∨ (elem x ys)

in elem.

But what should be the type of elem? It cannot be ∀α.α→ [α]→ bool, because
equality might not be defined for all types. Picking a single type for which
we know equality exists, e.g. typing elem as char → [char] → bool, means
giving up the whole “genericity” point.

36

What’s needed is a way to express the middle ground between a ∀-quantified
polymorphic type and a concrete type; one that expresses the additional re-
striction that you can’t choose any type for α, it has to have an associated
definition of (≡).

6.2 Type classes and instances

Instead of singular overloaded functions like (≡) in the example above, many
functional programming languages like Clean and Haskell 98 lump overloaded
variable declarations into so-called type classes[29]. A type τ is an instance of
a type class if there are variables defined for that type corresponding to the
declarations of the type class.

For example, in Haskell 98, the type class Eq is a specification of two
overloaded functions for a given type α, with types (≡) :: α→ α→ bool and
(6≡) :: α → α → bool. Note that the type variable α must always occur in
overloaded declarations of a class defined in terms of α, since otherwise there
would be nothing to dispatch on. On the other hand, the variables declared
to be overloaded don’t need to be functions, they can be constants as well.

In the specific example of Eq, defining one overloaded variable in terms
of the other is a straightforward matter; for such cases, Haskell 98 allows
default definitions of overloaded variables. In this thesis, we will simplify
matters by not allowing default definitions. Since we are only interested in
type checking, it doesn’t matter where the actual definition of an overloaded
function comes from.

For interpreters and compilers, [16] describes a program transformation
from a language with overloaded variables to one without them.

6.2.1 Superclasses

A type class can be defined to have other superclasses. If κ′ is a superclass of
κ, that means every type that is an instance of κ also has to be an instance of
κ′. We will use the notation κ < κ′ for the reflexive transitive closure of this
relation.

37

6.2.2 Type class declarations

To be able to define type classes, we would need to extend the Λlet language
with new constructs. To simplify matters, just like we did with definitions of
algebraic data types, we will assume all classes and instances to be known
a priori. The datatype context Υ is extended to contain information about all
classes and instances. In particular, the information stored in Υ about classes
is:

• List of type classes: The statement Υ ` κ holds if κ is a type class.

• Superclasses: given two type classes κ and κ′, the statement Υ ` κ < κ′

holds if κ′ = κ or κ′ is a (direct or indirect) superclass of κ.

The types of the actual overloaded variables are stored in Γ as polymorphic
variables. If the variable v is declared to be an overloaded variable in class
κ α having type ∀β.θ ⇒ τ , then (v :: ∀α, β.{κ α} ∪ θ ⇒ τ) is included in the
initial Γ0.

6.2.3 Instance definitions

Types are not directly defined to be instances of a type class; instead, only
type constructors can be made instances. Given a type class κ and a type
constructor T with arity n, and some type variables α1, . . . , αk with k ≤ n, the
partially applied type constructor T α1 . . . αk can be made an instance of κ by
supplying the definitions of the overloads declared in κ.

Note that this effectively means at most one instance for a given pair (κ, T)

because the type of the overloaded variables declared in κ uniquely deter-
mines the arity of the type constructors which can be instances of κ.

Since the definition of an instance may require the type arguments to be
themselves instances of some other type classes, statements about instances
are of the form Υ ` {κ1 αi1 , . . . , κm αim} ⇒ κ (T α1, . . . , αk).

6.3 Overloaded and polymorphic types

With type classes, the type of the previously defined variable elem should
express that it can inhabit the type α → [α] → bool if α is an instance of
class Eq. This requires an extension of the type system HM; we will call this

38

extended system HMκ. Figure 6.1 shows the syntax of types in HMκ, with the
changes compared to HM highlighted.

Type variable: α
Type constructor: T
Simple type: τ = α

| T τ
| τ → τ

Type class: κ
Overloaded context: φ = κ τ
Overloaded type: ρ = φ⇒ τ
Polymorphic context: θ = κ α
Polymorphic type: σ = ∀α.θ ⇒ τ

Figure 6.1: Syntax of types of HMκ

Using this syntax, we will write the type of elem as ∀α.{Eq α} ⇒ α →
[α] → bool. This is an example of a polymorphic type in HMκ. Much like
polymorphic types in HM, it allows occurrences of elem to inhabit different
type instantiations.

The result of such an instantiation is an overloaded type recording the re-
quired instance context. For example, by instantiating α to [β], we get the
overloaded type {Eq [β]} ⇒ [β] → [[β]] → bool. The predicate Eq [β] may
or may or may not be a satisfiable, depending on whether [] is an instance of
Eq. For example, it may be the case that there is a universal instance of Eq []
(i.e. Υ ` Eq [β]), in which case the predicate can be resolved into the empty
polymorphic context, as in {} ⇒ [β]→ [[β]]→ bool.

A more realistic example is to define equality on lists using equality on
elements, expressed by the instance proposition Υ ` Eq β ⇒ Eq [β]. In that
case, the predicate of the overloaded type {Eq [β]} ⇒ [β] → [[β]] → bool is
resolved into {Eq β} ⇒ [β]→ [[β]]→ bool.

The following figure shows the definition of the predicate resolution oper-
ator φ� θ:

κ α� {κ α}

Υ ` {κ1 αi1 , . . . , κm αim} ⇒ κ (T αi . . . αn)

κ1 τi1 � θ1 · · · κm τim � θm

κ (T τ1 . . . τn)� θ1 ∪ · · · ∪ θm

39

Note that after the predicates in an overloaded context are resolved, the
result is always a polymorphic context.

6.4 Inference rules for HMκ

Compared to HM, the most fundamental change in the inference rules is the
addition of a local instance environment Φ. It is a set of overloaded predicates
like φ and allows type inference rules to be formulated on simple types.

There are two ways to move between simple types, overloaded types and
polymorphic types: Inst instantiates polymorphic types in some local in-
stance environment into simple types in an extended environment, and Over

simplifies Φ by moving predicates from the environment to the overloaded
type.

Γ,Φ ` E :: σ φ⇒ τ ∈ inst(σ)
(Inst)

Γ,Φ ∪ φ ` E :: τ

Γ,Φ ∪ φ ` E :: τ
(Over)

Γ,Φ ` E :: φ⇒ τ

6.4.1 Constructors and variables

The inference rules for constructors and variables are direct transliterations
of the rules of HM. Note that occurrences of monomorphic (overloaded) vari-
ables require the local instance environment to contain the necessary predi-
cates.

(c :: θ ⇒ τ) ∈ Υ α = vars τ
(Con)

Γ,Φ ` c :: ∀α.θ ⇒ τ

(x :: φ⇒ τ) ∈ Γ
(MonoVar)

Γ,Φ ∪ φ ` x :: τ

(x :: σ) ∈ Γ
(PolyVar)

Γ,Φ ` x :: σ

40

6.4.2 Application, λ-abstraction and pattern matching

These too are directly derived from the respective rules of HM. Patterns have
overloaded types as opposed to simple types because the type signature of
constructors can contain predicates.

Γ,Φ ` E :: τ ′ → τ Γ,Φ ` F :: τ ′
(App)

Γ,Φ ` E F :: τ

(Γ; (x :: τ ′)),Φ ` E :: τ Υ ` τ ′
(Abs)

Γ,Φ ` λx 7→ E :: τ ′ → τ

Γ,Φ ` E :: τ0

P1 :: φ1 ⇒ τ0 a Γ1 Υ ` φ1 v Φ Γ ∪ Γ1,Φ ` E1 :: τ
...

Pn :: φn ⇒ τ0 a Γn Υ ` φn v Φ Γ ∪ Γn,Φ ` En :: τ
(Case)

Γ,Φ ` case E of P1 7→ E1 . . . Pn 7→ En :: τ

Υ ` τ (VarPat)
x :: φ⇒ τ a (x :: τ)

(c :: σ) ∈ Υ

(φ⇒ τ1 → · · · → τn → T τ) ∈ inst(σ)

Υ ` φ v Φ

P1 :: φ1 ⇒ τ1 a Γ1 · · · Pn :: φn ⇒ τn a Γn
(ConPat)

c P1 . . . Pn :: φ ∪ φ1 ∪ · · · ∪ φn ⇒ T τ a Γ1 ∪ . . . ∪ Γn

Here, the judgement Υ ` φ v φ′ on overloaded contexts is defined to be
true if for every predicate κ τ in φ, there is a subclass κ′ < κ such that κ′ τ is
in φ′.

6.4.3 Let bindings

In HM, let-bound variables are monomorphic in recurrences, and their type
is generalised for the body of the let. Similarly, in HMκ recurrences are typed

41

with overloaded types, and the generalisation results in a polymorphic type.

P1 :: φ1 ⇒ τ1 a Γ1 Υ ` φ1 v φ
...

Pn :: φn ⇒ τn a Γn Υ ` φn v φ

Γ ∪ Γ1 ∪ . . . ∪ Γn,Φ ` E :: φ⇒ τ
(Def)

Γ,Φ ` f P1 . . . Pn = E a (f :: φ⇒ τ1 → . . .→ τn → τ)

Γ′ = Γ1; . . . ; Γn

Γ ∪ Γ′,Φ ` D1 a Γ1 · · · Γ ∪ Γ′,Φ ` Dn a Γn

Γ′′ = {x :: σ | (x :: ρ) ∈ Γ′, σ = gen(Γ, ρ)}
Γ ∪ Γ′′,Φ ` E :: τ

(Let)
Γ,Φ ` let D1 . . . Dn in E :: τ

An important aspect of the type generalisation σ = gen(Γ, ρ) is checking
for ambiguous predicates: for every polymorphic predicate κ β of the poly-
morphic type ∀α.θ ⇒ τ , the type variable β must occur in τ .

To understand this requirement, consider the following expression:

Υ := { [α] = . . . , (α, β) = . . . , (α, β, γ) = . . . ,char = . . . ,

Textual}

Γ0 := {show :: ∀α.Textual α⇒ α→ [char], read :: ∀α.Textual α⇒ [char]→ α}

let test1 x = read (show x)

test2 x = show (read x)

in (test1, test2)

Here, the type of the two let-bound variables, after generalisation, are:

test1 :: ∀α, β.Textual α,Textual β ⇒ α→ β

test2 :: ∀α.Textual α⇒ [char]→ [char]

The inferred polymorphic type of test2 fails ambiguity checking, because there
is an instance predicate for the type variable α, but α does not occur in the
type [char] → [char]. If we were to allow such polymorphic types, then

42

there would be nothing to dispatch on whenever test2 is invoked — in other
words, no way to resolve the calls to the overloaded functions read and show.

6.5 Algorithms for HMκ

HMκ is very much like HM in that type inference seemingly requires pre-
science in the application of rules Inst and Abs. Also, any number of pred-
icates can be moved from the local instance environment into the inferred
overloaded type in Over, but only one choice leads to an unambiguous gen-
eralised polymorphic type when applying rule Let.

Since instance predicates can only arise from the usage of overloaded vari-
ables, the bottom-up algorithm W can be easily adopted for direct type in-
ference of Λlet in HMκ. Other approaches such as [29] present translations
of expressions into languages where implementations of the basic HM is suf-
ficient to do type inference. The linearity argument presented in chapter 4
applies to both methods.

43

7. Compositional type checking for

type class polymorphism

In chapter 4, we have demonstrated a limitation of linear type systems when
it comes to explaining type errors. Compositional type systems, like the one
described in chapter 5, can give better explanations because it becomes mean-
ingful to argue about the type of subexpressions.

Better explanation of type errors is useful for the working programmer —
if it applies to a programming language with real-world use. The language
Λlet with the type system HMκ presented in chapter 6 is a good enough model
of the functional programming language Haskell 98 so that practical results
applying to Haskell can be derived from its analysis.

Therefore, in this chapter we extend the type system C to allow for type
class polymorphism, resulting in the type system Cκ that we’ve used to im-
plement a compositional type checker for Haskell 98 (see the appendix for
details on the implementation).

7.1 Class predicates in typings

The type system C presented in chapter 5 is based on judgements of the
scheme Γ,∆ ` E : τ , where Γ is the polymorphic environment passed down,
and ∆ is the monomorphic environment collected from subexpressions.

There are two apparent ways to include class predicates in the typing
∆ ` τ . One is to use either overloaded or polymorphic types instead of a
simple type, and the other is to include predicates in ∆.

The problem with using an overloaded or a polymorphic type on the right-
hand side of a typing (i.e. by allowing typings of the scheme ∆ ` ρ or ∆ ` σ) is
that class predicate constraints should propagate independently of the actual
usage of overloaded variables.

44

For example, consider the following expression:

Υ := {Textual}

Γ0 := {show :: ∀α.Textual α⇒ α→ [char]}

idText := λx 7→ let s = show x in x.

Using the inference rules of HMκ, we can infer the principal type ∀α.Textual α⇒
α→ α:

Γ′ ` show :: ∀α.Textual α⇒ α→ [char]
Γ′ ` show :: Textual α⇒ α→ [char]

Γ′,Φ ` show :: α→ [char] Γ′,Φ ` x :: α

Γ′,Φ ` show x :: [char]
Γ′,Φ ` s = show x a {s :: [char]} Γ′,Φ ` x :: α

Γ,Φ ` let s = show x in x :: α

Γ0,Φ ` λx 7→ let s = show x in x :: α→ α

Γ0 ` λx 7→ let s = show x in x :: Textual α⇒ α→ α

with Γ = Γ0; {x :: α}

Γ′ = Γ′; {s :: [char]}

Φ = {Textual α}

As we can see, the definition of s is enough to constraint the type variable α,
without s actually occurring anywhere.

Because of this need to make instance requirements introduced by vari-
able definitions independent of variable usage, we record class predicate
constraints generated by subexpressions and pass them around just like the
monomorphic environment ∆. Type instantiation then affects the whole of ∆

and this instance environment Θ in unison.
Overloaded contexts only appear in intermediate steps of substitution: if

α τ is applied to κ α, the resulting overloaded predicate κ τ is immediately
resolved (using the same resolution operator φ � θ as used by HMκ), and
the resulting polymorphic predicates are simply combined (with redundant
superclasses removed) into the substituted instance environment Θ′. We will
denote this substitution-resolution-combination with the + operator.

45

7.2 Inference rules

The inference rules of C can be adapted to handle class predicates in a straight-
forward manner. We omit lengthy explanations and let the rules speak for
themselves.

7.2.1 Constants and variables

(c :: θ ⇒ τ) ∈ Υ ∅; Θ ` τ ′ = inst ∅; θ ` τ
(Con)

Γ; ∅; Θ ` c :: τ ′

Γ(x) = ∆; Θ ` τ ∆′; Θ′ ` τ ′ = inst ∆; Θ ` τ
(PolyVar)

Γ; ∆′; Θ′ ` x :: τ ′

x 6∈ dom Γ α new
(MonoVar)

Γ; {x :: α}; ∅ ` x :: α

7.2.2 λ-abstraction and function application

Γ; ∆; Θ ` E :: τ (x :: τ ′) ∈ ∆
(Abs)

Γ; ∆ \ x; Θ ` λx 7→ E :: τ ′ → τ

Γ; ∆; Θ ` E :: τ x 6∈ dom ∆ α new
(Abs

′)
Γ; ∆; Θ ` λx 7→ E :: α→ τ

Γ; ∆1; Θ1 ` E :: τ ′ Γ; ∆2; Θ2 ` F :: τ ′′
(App)

Γ; ∆; Θ ` E F :: τ

where α new

Ψ = U({∆1,∆2}, {τ ′ ∼ τ ′′ → α})

∆ = Ψ∆1 ∪Ψ∆2

Θ = ΨΘ1 + ΨΘ2

τ = Ψα

46

7.2.3 Case expressions

Γ; ∆0; Θ0 ` E :: τ0

∆′
1; Θ′

1 ` P1 :: τ ′1 Γ; ∆1; Θ1 ` E1 :: τ1
...

∆′
n; Θ′

1 ` Pn :: τ ′n Γ; ∆n; Θ1 ` En :: τn
(Case)

Γ; ∆; Θ ` case E of P1 7→ E1 . . . Pn 7→ En :: τ

where α new

Ψ = U({∆0,∆1,∆
′
1, . . . ,∆n,∆

′
n}, {τ0 ∼ τ ′i , τi ∼ α | i = 1 . . . n})

∆ = Ψ∆0 ∪
n⋃
i=1

(Ψ∆i \ dom ∆′
i)

τ = Ψα

Θ =
n∑
i=1

(ΨΘi + ΨΘ′
i) + ΨΘ0

α new (VarPat)
{x :: α}; ∅ ` x :: α

(c :: θ ⇒ τ1 → · · · → τn → T τ) ∈ Υ

∆1; Θ1 ` P1 :: τ ′1 · · · ∆n; Θn ` Pn :: τ ′n
(ConPat)

∆; Θ ` c P1 . . . Pn :: Ψ(T τ)

where Ψ = U({∆1, . . . ,∆n}, {τ1 ∼ τ ′1, . . . , τn ∼ τ ′n})

∆ = Ψ∆1 ∪ · · · ∪Ψ∆n

Θ = Ψθ + ΨΘ1 + · · ·+ ΨΘn

Note that although pattern-bound variables are removed from the monomor-
phic environment ∆ in rule Case (which is exactly the same behaviour as C),
the class predicates generated from patterns are collected as-is from the pred-
icate environments Θ′

i.

47

7.2.4 Let bindings

Γ; ∆1; Θ1 ` f P 1 = E1

...
Γ; ∆n; Θn ` f P n = En

Γ′; ∆′; Θ′ ` E :: τ

Unamb(Θ0,∆0 ` τ0)
(Let)

Γ; ∆; Θ ` let f P 1 = E1 · · · f P n = En in E :: Ψτ

where α new

Ψ0 = U({∆1, . . . ,∆n}, {∆i(f) ∼ α | i = 1 . . . n}

∆0 =
n⋃
i=1

Ψ0∆i \ {f}

τ0 = Ψ0α

Θ0 =
n∑
i=1

Ψ0Θi

Γ′ = Γ; {f 7→ ∆0 ` τ0}

Ψ = U({∆0,∆
′})

∆ = Ψ∆′ ∪Ψ∆0

Θ = ΨΘ0 + ΨΘ′

∆1; Θ1 ` P1 :: τ1
...

∆n; Θn ` Pn :: τn

Γ,∆′; Θ′ ` E :: τ0
(Def)

Γ; ∆; Θ ` f P1 · · ·Pn = E

where ∆0 = {f :: τ1 → . . .→ τn → τ0}

Ψ = U({∆0,∆1, . . . ,∆n,∆
′})

∆ = (Ψ∆0 ∪Ψ∆′) \
n⋃
i=1

dom ∆i

Θ =
n∑
i=1

ΨΘi + ΨΘ0 + ΨΘ′

48

7.3 Checking for ambiguous class predicates

An important point of HMκ is that the class predicates in a polymorphic type
can only refer to type variables that occur in the type itself; for example, the
type Textual α ⇒ [char] is not a valid polymorphic type because α doesn’t
occur in [char]. As we have seen, this rule is enforced by the application of
gen in rule Let.

However, there is no explicit type generalisation step in C, and class predi-
cates are not associated with types. But there is a point when the polymorphic
environment Γ is extended into Γ′ by adding the typing of the newly-defined
variable,

Θ0 =
n∑
i=1

Ψ0Θi

Γ′ = Γ; {f 7→ ∆0 ` Ψoα},

where we can check that usages of f will yield type equations that necessarily
fix all type variables occurring in class predicates by requiring the following
property Unamb:

Unamb(Θ,∆ ` τ) := ∀(κ α) ∈ Θ : α ∈ vars τ∨α ∈
⋃
{vars τ ′ | (x :: τ ′) ∈ ∆} ,

which can be seen in the inference rule Let.

49

Conclusions

We have presented two type systems for the language Λlet , a practical model
of real-life functional languages like Haskell or Clean. One is the well-known
Hindley-Milner type system, the canonical type system for let-polymorphic,
λ-calculus-based languages; the other is a compositional type system based on
typings that allows for better error reporting precisely by being compositional.

By extending both type systems with type class polymorphism, a form of
ad-hoc polymorphism, we arrive at the feature set of the Haskell 98 program-
ming language. An implementation of Cκ can leverage all the advantages of
compositional type inference presented in chapter 4, to report type errors in
real-world Haskell 98 programs. Appendix A contains notes on our reference
implementation.

Future work

The Glasgow Haskell Compiler (GHC) introduces many type system exten-
sions to Haskell 98, some of which directly concern type class polymorphism[30]:

• Multi-parameter type classes

• Functional dependencies[31]

• Flexible contexts & undecidable instances[32]

• Flexible & overlapping instances

A natural way to follow up on the present work would be adding support for
these type system features to the compositional type system Cκ.

On the practical side, our implementation takes some shortcuts and doesn’t
support some features of Haskell 98, most notably the module system, record
types and the do-notation. A future revision of the implementation should
fix these omissions to enable real-world usage.

50

A. Implementation notes

As an illustration of the type system Cκ, we have created an implementation
for the Haskell 98 programming language. This implementation, named Tan-
doori, is available under the terms of the BSD license from http://gergo.

erdi.hu/projects/tandoori/.

Using GHC as a basis

The modular design of the Glasgow Haskell Compiler (GHC) enabled us to
reuse the implementation of the “boring parts” of writing a type checker for
Haskell. Tandoori is inserted into the compiler pipeline replacing the regular,
Hindley-Milner-based type checker. This way, we can use the source code
parser and the reference resolver from GHC. The latter also sorts definitions
via dependency analysis, so its output is already more-or-less in the simplified
format that we used when discussing Λlet .

When we started work on Tandoori, the latest stable release of GHC was
version 6.10. Adopting the codebase to GHC 6.12 only involved changing the
topmost calls to the parser and the resolver since the output format of these
steps was unchanged.

High-level design

Tandoori uses an Error/Reader/Writer/State monad[33] to thread state and
results throughout the type inference:

• The Error and the Writer part are both used for collecting type errors.
Wherever there is a sensible, most generic default to use as the result of
type inference, errors detected in that part are tunnelled into the Writer
and type inference goes on with the default results. This allows us to
detect multiple errors in one go.

51

http://gergo.erdi.hu/projects/tandoori/
http://gergo.erdi.hu/projects/tandoori/

• The Reader part contains information on data types, classes and in-
stances (the Υ part of Cκ), and the polymorphic environment for the
current scope (Γ). We also store the source code location of the currently-
analysed subexpression; this information is used in error messages.

• The State part is a simple infinite supply of type variables, used wher-
ever the inference rules call for a new unique type variable.

The actual sequence of events in the type checker is as follows, with items
marked ∗ implemented by GHC:

1. ∗ Parse source code

2. ∗ Resolve references, sort and group definitions using dependency anal-
ysis

3. Collect data type definitions

4. Collect class declarations, build superclass graph, calculate the < rela-
tion on classes

5. Collect instance declarations

6. Type check variable definitions, record polymorphic types group-by-
group in the order given by step 2

7. Type check instance definitions

Note that type class instances are processed twice. The first run merely
records the existence of instances, and this information is used when type
checking variable definitions. Instance definitions are only checked after the
type of all defined variables have been inferred, since instance definitions can
contain references to arbitrary top-level variables.

Known limitations

We have taken some shortcuts and omitted some features in Tandoori that
would be straightforward but laborious to implement while giving no new
insight. Among these are:

• Module inclusion, implicitly including the Haskell Prelude

52

• Record data types

• Do-notation

• Guards

Hopefully, the community will take up Tandoori and a future revision will
address these points, leading to a compositional type checker that can enjoy
real-world usage.

53

Bibliography

[1] J. Abrial, M. Lee, D. Neilson, P. Scharbach, and I. Sørensen, “The B-
method,” in VDM ’91 Formal Software Development Methods (S. Prehn and
H. Toetenel, eds.), vol. 552 of Lecture Notes in Computer Science, pp. 398–
405, Springer Berlin / Heidelberg, 1991. 10.1007/BFb0020001.

[2] C. A. R. Hoare, “An axiomatic basis for computer programming,” Com-
mun. ACM, vol. 12, no. 10, pp. 576–580, 1969.

[3] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal deriva-
tion of programs,” Commun. ACM, vol. 18, no. 8, pp. 453–457, 1975.

[4] R. Milner, “A theory of type polymorphism in programming,” Journal of
Computer and System Sciences, vol. 17, pp. 348–375, Dec. 1978.

[5] W. Howard, “The formulae-as-types notion of construction, To HB Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism (JR
Hindley and JP Seldin, eds.),” 1980.

[6] W. Quine, Word and object. The MIT Press, 1960.

[7] B. Nordström, K. Petersson, and J. Smith, Programming in Martin-Löf’s
type theory. Citeseer, 1990.

[8] U. Norell, Towards a practical programming language based on dependent type
theory. PhD thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, SE-412 96 Göteborg, Sweden, Sept.
2007.

[9] Y. Bertot and P. Castéran, Interactive theorem proving and program develop-
ment: Coq’Art: the calculus of inductive constructions. Springer-Verlag New
York Inc, 2004.

54

[10] C. McBride, “Epigram: Practical programming with dependent types,”
Advanced Functional Programming, pp. 130–170, 2005.

[11] P. Hudak, P. Wadler, A. Brian, B. J. Fairbairn, J. Fasel, K. Hammond,
J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, S. P. Jones, M. Reeve,
D. Wise, and J. Young, “Report on the programming language Haskell: A
non-strict, purely functional language,” ACM SIGPLAN Notices, vol. 27,
1992.

[12] T. Brus, M. van Eekelen, M. van Leer, and M. Plasmeijer, “Clean – a
language for functional graph rewriting,” in Functional Programming Lan-
guages and Computer Architecture (G. Kahn, ed.), vol. 274 of Lecture Notes
in Computer Science, pp. 364–384, Springer Berlin / Heidelberg, 1987.

[13] B. Heeren, D. Leijen, and A. van IJzendoorn, “Helium, for learning
Haskell,” in Proceedings of the 2003 ACM SIGPLAN workshop on Haskell,
pp. 62–71, ACM, 2003.

[14] B. Heeren et al., “Top Quality Type Error Messages,” 2005.

[15] O. Chitil, “Compositional explanation of types and algorithmic debug-
ging of type errors,” in ICFP ’01: Proceedings of the sixth ACM SIGPLAN
international conference on Functional programming, (New York, NY, USA),
pp. 193–204, ACM, 2001.

[16] C. Hall, K. Hammond, S. Peyton Jones, and P. Wadler, “Type classes
in Haskell,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 18, no. 2, pp. 109–138, 1996.

[17] “The Glasgow Haskell Compiler.” http://www.haskell.org/ghc,
Nov. 2010.

[18] R. Rojas, “A tutorial introduction to the lambda calculus,” FU Berlin,
1997.

[19] A. Church, “A set of postulates for the foundation of logic,” Annals of
mathematics, vol. 33, no. 2, pp. 346–366, 1932.

[20] A. Turing, “Computability and λ-definability,” Journal of Symbolic Logic,
vol. 2, no. 4, pp. 153–163, 1937.

55

http://www.haskell.org/ghc

[21] A. Church, “An unsolvable problem of elementary number theory,”
American journal of mathematics, vol. 58, no. 2, pp. 345–363, 1936.

[22] L. Damas and R. Milner, “Principal type-schemes for functional lan-
guages,” in Proc. 9th ACM Symp. on Principles of Programming Languages,
pp. 207–212, 1982.

[23] L. M. M. Damas, Type Assignment in Programming Languages. PhD thesis,
University of Edinburgh, Apr. 1985. Technical report CST-33-85.

[24] O. Lee and K. Yi, “Proofs about a folklore let-polymorphic type infer-
ence algorithm,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 20, no. 4, p. 723, 1998.

[25] J. Robinson, “A machine-oriented logic based on the resolution princi-
ple,” Journal of the ACM (JACM), vol. 12, no. 1, pp. 23–41, 1965.

[26] “Hugs 98.” http://www.haskell.org/hugs, Nov. 2010.

[27] C. Camarao and L. Figueiredo, “ML Has Principal Typings,” in 4th Brazil-
ian Symposium on Programming Languages, Recife, Brazil, Citeseer, 2000.

[28] J. C. Mitchell, Foundations of programming languages. Cambridge, MA,
USA: MIT Press, 1996.

[29] P. Wadler and S. Blott, “How to make ad-hoc polymorphism less ad hoc,”
in Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pp. 60–76, ACM, 1989.

[30] S. Jones, M. Jones, and E. Meijer, “Type classes: exploring the design
space,” in Haskell workshop, vol. 1997, 1997.

[31] M. Jones, “Type classes with functional dependencies,” Programming Lan-
guages and Systems, pp. 230–244, 2000.

[32] M. Sulzmann, G. Duck, S. Peyton-Jones, and P. Stuckey, “Understanding
functional dependencies via constraint handling rules,” Journal of Func-
tional Programming, vol. 17, no. 01, pp. 83–129, 2007.

[33] M. Jones, “Functional programming with overloading and higher-order
polymorphism,” Advanced Functional Programming, pp. 97–136, 1995.

56

http://www.haskell.org/hugs

	Introduction
	Notations
	The typed lambda calculus
	The formal language
	Type systems
	The HM type system
	Observations about HM

	Let-polymorphism
	The let language
	Recursive definitions
	HM type inference for let

	Type inference for Hindley-Milner type systems
	Algorithm W
	Algorithm M
	Unification

	Reporting and explaining type errors
	Linearity
	Errors discovered linearly
	A survey of Haskell compilers
	Explanation of type judgements
	Other aspects of type error reporting

	A compositional type system
	Motivation
	Typings
	Polymorphic and monomorphic variables
	Unification of typings
	Type system C
	Principal typings, C and HM

	Type class polymorphism
	Non-parametric polymorphism
	Type classes and instances
	Overloaded and polymorphic types
	Inference rules for HM
	Algorithms for HM

	Compositional type checking for type class polymorphism
	Class predicates in typings
	Inference rules
	Checking for ambiguous class predicates

	Conclusions
	Future work

	Implementation notes
	Using GHC as a basis
	High-level design
	Known limitations

	Bibliography

