Gergd Erdi
http://gergo.erdi.hu/

Haskell.SG
December 2018.

1/39


http://gergo.erdi.hu/

How many Agda programmers does it take to change a

lightbulb?

2/39



How many Agda programmers does it take to change a
lightbulb?

Are you kidding me? It takes two PhD’s six months just to
prove that the socket and the bulb are wound in the same

direction!

2/39



3/39



Type Theory

e Single unified language for objects and propositions
(c.f. ZF set theory + FOL)

® Dependent types give us predicate logic (via
Curry-Howard)

® Type formers, eliminators, 3-rules

4/39



® U: the type of types (called Set in Agda)
® | T, Bool
e ,X

® Inductive datatypes (e.g. N)

5/39



[dAxy:U
Its sole constructor is refl : ¥V x — Id x x

Definitional equality: everything can only be equal to
itself.

6/39



Axiom J: eliminator for identity type

J:(P:(xy: A) —Id xy — Set) —
(V x — Pxx (refl x)) —
Vixy: Al (p: ldxy) — Pxyp

From this, we can prove that Id is an equivalence relation.

7/39



Properties of Id (cont.d)

Uniqueness of identity types:
UIP:{xy: At—(pqg:ldxy) —1Idpgq
Axiom K: equivalent to UIP
K:V(x: A)— (P:1d x x — Set) —
P (refl x) —
V(p:ldxx)— Pp

UIP / K are independent of (but compatible with) MLTT.

8/39



Function extensionality:

funExt: (fg: (x: A) = Bx) —
(Vx —Id (fx) (g x) —
Idfg

Function extensionality is independent of (but
compatible with) MLTT.

9/39



10/39



In some topological space A and two points z,y : A, a
path p from z to y (or, p : © ~» y) is:

p:[0,1] = A,p € Cs.t.
p(0) =z,p(1) =y

11/39



If f,g: A— B, f,g € C, then a homotopy H between f
and g is:

H:Ax[0,1]— B,H € C st

H(z,0) = f(z)
H(z,1) = g(x)

12/39



Homotopies between paths

If p,q : x ~> y, then as a special case, a homotopy H
between p and q is:

H:[0,1x[0,1] = A, H € Cst.

H(i,0) = p(i)

H<Z7 1) = Q<7’) ¢ S P
H(1,j) =y AN
This can be iterated. X E 3’

13/39



Paths as equalities?

Paths between points are a bit like equalities between
them: they are reflexive (trivial path), symmetric (just go
backwards) and transitive (concatenation).

But what does that mean?

14/39



15/39



Type Theory with Paths

Basic idea: types are spaces, and the paths in that space
(written _=_) correspond to equalities.

® This only makes sense if all functions are continuous
® Trivially true for discrete spaces
® Paths have structure, so UIP doesn’t hold

® Paths are purely synthetic, we’re not putting
[0,1] C R at the base of our formal system...

16/39



Are there any non-discrete spaces?

U is a type, so some types A and B are points in that
space. When is there a path between them?

Univalence axiom: the paths in U are equivalent to
equivalences, i.e. invertible functions modulo paths.
This is highy desirable!

Different equivalences yield different paths (e.g. id
vs. not for Bool)

Function extensionality can be proven from UA

17/39



Non-discrete spaces by fiat

Might as well use this rich structure of paths!

Higher inductive type: similar to an inductive datatype,
but constructors for not only points, but paths, paths
between paths, etc.

Loy
data Circle : Set where
base : Circle .
loop : base = base .

(,.(A’)e/

This generates a space via the algebra of paths; e.g.
trans loop loop : base = base.

18/39



We can represent the integers Z as N x N/ ~ where
(@, y) ~ (¢",y") = (z +y') = (@' +y).

19/39



Written out as a HIT:

Same:N—N—>N—>N— (ala) ("|0) (110)
Same xy x'y’=x+y'=x'+y CONCO R
data Z : Set where %

- :N—>N-—>2Z (0‘2) 4b\(112)

quot: Vxyx'y'— Same xy x"y’

—x-y=x"-y (0"9) (4‘5) 2‘}‘

20/39



Functions over Z

Continuity in this space: representation-invariance.

Enforced by the type system: functions are defined over
points and paths at the same time.

For example, if we want to do doubling:

double : Z — 7
double (x-y)) = 2% x-2xy

we also have to give

double (quot xy x"y"eq) =
quot (2% x) (2% y) (2% x") (2 * y’) arithmetic-prf

21/39



Summary

MLTT, paths as equality, no K

Univalence added as an axiom

All functions continuous by construction

Function extensionality is a theorem

Higher inductive types (and more...)

Big BUT:

22/39



Summary

MLTT, paths as equality, no K

Univalence added as an axiom

All functions continuous by construction

Function extensionality is a theorem

Higher inductive types (and more...)

Big BUT: HoTT postulates the Univalence Axiom with no
computational content

22/39



23/39



Representations of paths

® Topology: p: [0,1] — A,p € C:
“continuously-infinitely detailed”, p(2) etc.

e Homotopy Type Theory: p : {0,1} — A? But no UIP,
so it does have structure? But not enough to support
computation?

24/39



Representations of paths

® Topology: p: [0,1] — A,p € C:
“continuously-infinitely detailed”, p(2) etc.

e Homotopy Type Theory: p : {0,1} — A? But no UIP,
so it does have structure? But not enough to support
computation?

® Cubical Type Theory: p : I — A, where [ is some
formal version of [0, 1]

24/39



I is the free distributive lattice (of countably infinite,
distinct direction variables):

i0i1:1

~ 1=l
VAR e
A= 1=

This has decidable equality!

25/39



Paths, algebraically

I is the free distributive lattice (of countably infinite,
distinct direction variables):

i0i1:1

~ =
BVARE B
A l—1—1

This has decidable equality!

We then represent a path p : © = y by a function
p:l —= Ast pi0 = xand pil = y.

25/39



Unlike in HoTT, path reflexivity and symmetry are no
longer axioms:

refl : {x: A} — x=x

refl {x} =A7i— x

sym:V{xy: Al > x=y—y=x
symp=Ai—p(~1)

26/39



cong: (f: A= B){xy: Al > x=y— fx=fy
cong fp=Ai— f(pi)

27/39



cong: (f: (x: A) = Bx){xy: A} —
(p: x=y) — PathP(Ai— B(p i) (fx) (fy)
cong fp=Ai—f(pi

J 6(!‘-') &3’

27/39



funExt: {fg: (x: A) = Bx} —

(Vx—fx=gx) —f=¢g
funExt p=Ai— (Ax— pxi)

B x
>

28/39



If p: x=yand q : y=z how do we make

p(2i) ifi <0.5

t = Ai —
ranspa ' {q(Zi—l) if i >0.5

=

x/_\/y,d/—\—/’

z /3
1
—

o 7§ 2

X

4+

[4

29/39



Path composition

The primitive operation that supports transitivity, and
many other ways of composing paths, is: given the

bottom of a “box", and a system of consistent sides, we
can construct the lid.

‘ (
X/\ /\‘ﬂ
r 7

X %
49,

30/39



trans: x=sy —>y=z—x=7
trans p g i = comp (A _ — A)

(A {j(i=i0) — x
s j(i=i1)—qj HE v,
) N

(inc (p 1)

31/39



slidingLid : (po: x=y) (pr: x'=y)(qg: x=x) —
Vi—>poi=p;i
slidingLid p, p; q i j=comp (A _ — A)
(A k(j=10) = po (in k)
k(= i1) = py (i7 K
sk (i=10) — qJ
by
(inc (g )

32/39



double: Z — Z
double (x-y)=(2"x)-(2"y)
double (quot xy x"y’'p i) =
quot 2* ) (2% y) (2% x) 2 y) p' i
where
P2 x+2%y'=2"x"+2%y
p’ = arithmetic-proof x y p

33/39



34/39



x ta

35/39



A problem:

'7" [}
X ta — 2>X+a

“| e

P

What if there is no way to continuously deform
slidingLid p, p; qo i1
(a homotopically transformed proof)

into

q:
(an arithmetic proof about natural numbers)

36/39



Solution: set-truncating

We define Z not to have any holes by adding a third
constructor (a la HoTT §6.10):

data Z : Set where
- :N—>N-—>2Z
quot:Vxyx'y'— Samexyx'y — x-y=x"-y’
trunc:Vi{xy:Z} - (pq: x=y) > p=gq

More cases to handle in functions, but more possibilities
in constructing results.

37/39



® Details of equivalences

® Univalence (a theorem in CTT) and glueing in general

38/39



® Prove (Z,+) is an Abelian group
® Prove Z =~ Int (from the standard library)

® Prove Z =~ base = base (in Circle)

39/39



	Martin-Löf Type Theory
	Topological homotopies
	Homotopy Type Theory
	Cubical Type Theory

