Gergd Erdi
http://gergo.erdi.hu/

Papers We Love.SG, November 2015.

http://gergo.erdi.hu/

Self-representation

» Data: in normal form

» Quotation: injective & total mapping of terms to data (not a
function defined in the language! it is necessarily intensional)

» Shallow vs. deep representation: supports one or multiple
operations

» Related: embedding, but that is not necessarily data

To summarize, the quotation mapping |-) maps some closed term
e : T to another, normal-form term e} : Exp 7.

Note that Exp might be a constant type family, i.e. the
representation might be untyped.

Unquoter vs. reducer

» Unquoter: a function, defined in the language, that, when
applied on a quoted term, S-reduces to the term itself:

r_1 ES
unquote e, —g e

» Reducer. a function, defined in the language, that, when
applied on a quoted term, 3-reduces to the representation of
the normal form of the term:
if

e —>;§ v v is in normal form

then

Intuitive example

Suppose we have a language with
» Natural numbers
» Addition
» Strings
The following are all different terms of this language:
»3 + 5
» "3 + 5"
> 8
» ngn

Then, by using a string-based representation (Exp _ = String), we

have
*

unquote("3 + 5") —* 3 + 5

reduce("3 + 5") —* ng"

{terme) = x| Ax e | e &

The untyped lambda calculus
» Not strongly normalizing (e.g. (Ax.x x) (Ax.x x))

» Self-interpreter is no big deal & necessarily partial

const = AX.\y.x

Selected lambda calculi = STLC

{type 7) k= T — T
{terme) = x | Ax:T.e | e1 &

The simply typed lambda calculus
» Strongly normalizing
» No type-level abstractions (incl. polymorphism)!
» Needs “base types”

» How would you type a generic self-interpreter. ..?

const: A —-B— A
const = Ax : Ay : B.x

Selected lambda calculi — F

kind k) = *
{ypeT) E a | m—om | Ya: kT
{terme) | x| Ax:7.e | e1 & | Na:k.e | eeT
System F
» Strongly normalizing
» Parametric polymorphism (note: at any rank!)
» “Atomic” types

» Self-interpreter possible?

const : Vo : *.(a > VB : x.(8 — a))
const = Na @ x Ax : a.\B . . Ay : B.x

Selected lambda calculi — F,

<kind /<a> l: * ‘ K1 — R2
{ypeT) = a | nm—omn | Yokt | kT | 71T
{terme) | x| Ax:7e | e1 & | Na:k.e | eeT

System F,,
» Strongly normalizing
» Parametric polymorphism (note: at any rank!)
» Type constructors, type transformers, ...
» Self-interpreter possible?

const : Vo : *.(a > VB : x.(8 — a))
const = Na @ x Ax : a.\B . Ay : B.x

Is it possible to write a self-interpreter for a strongly normalizing
A-calculus?

Is it possible to write a self-interpreter for a strongly normalizing
A-calculus?

» Folklore says no.

The normalization barrier

Is it possible to write a self-interpreter for a strongly normalizing
A-calculus?

» Folklore says no.

» Previous results: interpretation of F in Fy,, F,, in F, (by
encoding, for example, F V-types at * as F,, type constructors
at x — x)

» The current paper’s authors have also, previously, interpreted
F and System U in System U (which is not strongly
normalizing).

A proof for computable total functions

Definition

Let Univ(N — N) be the set of universial functions for N — N: its
elements are the functions v : (N x N) < N such that for every
total, computable function f : N — N, we have

VxeN:u((f,x)="f(x)

(I

(note that |- here maps total, computable functions to N)

If u e Univ(N — N), then the Cantor-esque function
d := x — u(x,x) + 1 is not total

Suppose u € Univ(N — N) and d is total; then

d('d)) = u('d’,"d") +1=d("d}) + 1

L L)L L

which is a contradiction. O

If ue Univ(N — N), then u isn't total

Suppose u is total. Then, Vx € N, u(x, x) is defined; so we have

d(x) = u(x,x) +1

which is a perfectly cromulent definition (since - + 1 is also total).
In other words, d would be total. This contradicts our previous
lemma. |

If we have a self-interpreter u for F,, the strong normalization of F
means (u e) has a normal form for any well-typed e; in other words, u is
total. So can we transform the previous theorem to say that u can't exist?

So what about, e.g. F, instead of N — N7

If we have a self-interpreter u for F,, the strong normalization of F
means (u e) has a normal form for any well-typed e; in other words, u is
total. So can we transform the previous theorem to say that u can't exist?

Suppose we have an F,-self-interpreter u, and let's set
d = Ax.Ay.((u x) x). Then, if d [d} would be well-typed, we'd have

d [, =p Ay.((u d)) d]) =p Ay.(d d)

which is clearly a contradiction (it'd lead to two “competing” normal
forms v =3 Ay.v). So we can transform the lemma.

So what about, e.g. F, instead of N — N7

If we have a self-interpreter u for F,, the strong normalization of F
means (u e) has a normal form for any well-typed e; in other words, u is
total. So can we transform the previous theorem to say that u can't exist?

Suppose we have an F,-self-interpreter u, and let's set
d = Ax.Ay.((u x) x). Then, if d [d} would be well-typed, we'd have

d [, =p Ay.((u d)) d]) =p Ay.(d d)

which is clearly a contradiction (it'd lead to two “competing” normal
forms v =3 Ay.v). So we can transform the lemma.

However, just because u, d and [d’ are well-typed, it doesn't mean d [d’
needs to be well-typed! The diagonalization gadget is not expressible
inside F,,. The theorem hasn’t been successfully transformed!

A cheap & cheerful self-interpreter for F/F, /F}

Of course, just because one particular proof of impossibility failed,
doesn’t mean self-interpretation is possible. So the first proof the
paper presents is a simple, shallow representation that only
supports an unquoter.

Let's look at the following example:

const :

const =

id :
id =

foo :

foo =

Va :x.a— (V3 :x.f — «a)
Ao % Ax caNG x Ay @ B.x

Vo : x.oo — o

No s *) x : a.x

VB %0 - Va:*xa— «

conste(Va : ».a — «) id

For reference, after inlining the helper definitions, we have

foo = (Na: x Ax : a NG i x Ay : f.x)e(Va : .o —) (A : x.Ax © a.x)

Why not just represent everything as itself, and set unquote := id?

A cheap & cheerful self-interpreter for F/F, /F}

For reference, after inlining the helper definitions, we have

foo = (Na: x Ax : a NG i x Ay : f.x)e(Va : .o —) (A : x.Ax © a.x)

A smart-ass non-solution

Why not just represent everything as itself, and set unquote := id?
Because foo is not in normal form, so it isn't data! The type
application, and then the outermost term application can be
(B-reduced away.

A cheap & cheerful self-interpreter for F/F, /F}

For reference, after inlining the helper definitions, we have

foo = (Na: x Ax : a NG i x Ay : f.x)e(Va : .o —) (A : x.Ax © a.x)

A smart-ass non-solution

Why not just represent everything as itself, and set unquote := id?
Because foo is not in normal form, so it isn't data! The type
application, and then the outermost term application can be
B-reduced away.

Central idea of the paper: replace the applications with
application-markers!

A cheap & cheerful self-interpreter for F/F, /F}

Central idea of the paper: replace the applications with

application-markers!
Where are all the applications in our example?

foo = ’ (Aa: *Ax B x Ay fx)e(Va : .a — «) ‘ (Aa % Ax 1 a.x)

To ensure there are no (reducable) applications left, let's apply a
marker ¢, which is a free variable, on all terms which are applied

on either types or terms:

oloNa:x Ax: NG :x Ay : 6.x‘@(Va Dxa o Q)

(A @ % Ax @ aex)

A cheap & cheerful self-interpreter for F/F, /F}

oloNa:x Ax: NG :x Ay : ﬁ.x‘@(Va Dxa—)

(At > Ax @ a.x)

Of course, ¢ needs to be polymorphic, so we'll need to sprinkle our
code with some type applications that duplicate the types of the

originally-applied functions:

oe((Va:xa— a) > VB : .0 - (Va: x.a — «a))

’<> o(Va:x.a— (VB :x. — «)) const‘@(Va ;

id

*.a— Q))

A cheap & cheerful self-interpreter for F/F, /F}

If we now close this by putting it under a ¢-binding A\, we have our
representation:

foo!: Exp (VB :x.f - Va:* a— «)
fool = XNo:(Vi:xe—u).
ce((Va:xa—a) > V3 : *.0 - (Va:rxa— «a))
((ve(Va: x.ax — (VB : *.f — «)) const)e(Va : . —)
id
With
Expr=M:*x1t—>1)>T
and all unquote needs to do is plug in id (the “un-marker") as the
marker:
unquote : Vao: x. (Ve : %0 — 1) > a) - «

unquote = Aa : *.Aqg: (Ve :x1— 1) > a.q id

If{} -e:7then{} - e, :(Ve:*1— 1) > 7T

If {} - e : 7T then unquoteer e, —™* €

» Suspend reducability by marking each applied term with a free
variable

» Process the representation by plugging in a suitable function
for the marker

Summary of the technique

» Suspend reducability by marking each applied term with a free
variable

» Process the representation by plugging in a suitable function
for the marker

But is this just a cheap trick? So what if there's a bunch of places
where we can apply id?

Summary of the technique

» Suspend reducability by marking each applied term with a free
variable

» Process the representation by plugging in a suitable function
for the marker

But is this just a cheap trick? So what if there's a bunch of places

where we can apply id?
Not at all!
The marker's type just happens to be the trivial ¢ — ¢ in this

shallow unquoter case, but the technique generalizes by mapping
subresults (of some type) to a larger result (of some, possibly
different, type); i.e., a fold.

A deep self-representation of F,

The grand result of the paper is a deep self-representation of F,
(unlike the previous, shallow representation, this doesn’t readily
work in F or F})

» Deep representation means the same representation supports
multiple operations (late binding of the operation)
» Examples from the paper:
> isAbs, isNF, size
> unquote
» CPS

A deep self-representation of F,

The grand result of the paper is a deep self-representation of F,
(unlike the previous, shallow representation, this doesn’t readily
work in F or F})

» Deep representation means the same representation supports
multiple operations (late binding of the operation)
» Examples from the paper:
> isAbs, isNF, size
> unquote
> CPS
» | will only cover it cursorily in this talk; see the paper for
details

A deep self-representation of F,

Given {} - e : 7, first 7 is transformed into [7| by iteratively
wrapping each *-kinded (non-type variable) subtree in a (free type
variable) type constructor F : * — *

Example:

Va:*xa—>a =Va:* F(Fa— F a)

This means types at x become types at [Ti=(x > x) > K;in

particular, types at » become types at [x!

(xs 5)

A deep self-representation of F,

Then, for 'e!, each A-abstraction, application, A-abstraction, and

type application of the term is wrapped into calls of one of four
free variables, of types

Abs F =Va:+xVp:* (Fla, > F) > F la—p
App F =Va:+xVp:*x. Fla—p —F a — F
TAbs F =Va: . Strip F a —> o — F [a;

TApp F =Va:*. Flal > VB :x(a— F p3) > F 3

A deep self-representation of F,

Then, for 'e!, each A-abstraction, application, A-abstraction, and

type application of the term is wrapped into calls of one of four
free variables, of types

Abs F =Va:*x¥p:x. (F la. > F) > F la— [,
App F =Va:*xYB:x. F la— 3, — F la,— F 3
TAbs F =Va:*. Strip F a — a — F [a]
where Strip F a =V :x. (Vy:x. Fy—>) > a—
TApp F =Va: Flal > V8 :x(a— F B) > F 3

A deep self-representation of F,

The representation of a term {} - e : 7 thus becomes a term
{} et Exp (AF : x —> %. 7)), with

Exp = x VF x — %,
Abs F —> App F — TAbs F — TApp F —
F (a F)

Note that Exp [T is still parametrized over the choice of
F : » — %, which is what ultimately allows the late-binding of the
choice of operation over the representation.

Summary

» F applied (iteratively) only to types of kind * = no need to
abstract F's type over kinds

» Parametric (in F) HOAS representation for terms; variables
range over representations

» A particular operation defines its own choice of F, and
implements the four “callbacks”

» For unquote, F = A : *. a, so e.g.
app :Va: > Vg :*x. (a >) >a—p

» For isAbs, F = Ao : x. Bool, and so
app : Va : x. V3 : . Bool — Bool — Bool

» For size, F = Aa : . Nat, giving
app : Va : x. VB : x. Nat — Nat — Nat

