
Matt Brown, Jens Palsberg:
Breaking Through the Normalization Barrier:

A Self-Interpreter for Fω (POPL 2016)

Gergő Érdi
http://gergo.erdi.hu/

Papers We Love.SG, November 2015.

http://gergo.erdi.hu/

Self-representation

§ Data: in normal form

§ Quotation: injective & total mapping of terms to data (not a
function defined in the language! it is necessarily intensional)

§ Shallow vs. deep representation: supports one or multiple
operations

§ Related: embedding, but that is not necessarily data

To summarize, the quotation mapping v¨w maps some closed term
e : τ to another, normal-form term vew : Exp τ .

Note that Exp might be a constant type family, i.e. the
representation might be untyped.

Unquoter vs. reducer

§ Unquoter: a function, defined in the language, that, when
applied on a quoted term, β-reduces to the term itself:

unquote vew ÝÑ˚
β e

§ Reducer: a function, defined in the language, that, when
applied on a quoted term, β-reduces to the representation of
the normal form of the term:
if

e ÝÑ˚
β v , v is in normal form

then
reduce vew ÝÑ˚

β vv w

Intuitive example

Suppose we have a language with

§ Natural numbers

§ Addition

§ Strings

The following are all different terms of this language:

§ 3 + 5

§ "3 + 5"

§ 8

§ "8"

Then, by using a string-based representation (Exp “ String), we
have

unquotep"3 + 5"q ÝÑ˚ 3 + 5

reducep"3 + 5"q ÝÑ˚ "8"

Selected lambda calculi – LC

xkind κy |ù ‹

| κ1 Ñ κ2

xtype τy |ù

α |

τ1 Ñ τ2

| @α : κ.τ | λα : κ.τ | τ1 τ2

xterm ey |ù x | λx

: τ

.e | e1 e2

| Λα : κ.e | e @ τ

The untyped lambda calculus

§ Not strongly normalizing (e.g. pλx .x xq pλx .x xq)

§ Self-interpreter is no big deal & necessarily partial

const “ λx .λy .x

Selected lambda calculi – STLC

xkind κy |ù ‹

| κ1 Ñ κ2

xtype τy |ù

α |

τ1 Ñ τ2

| @α : κ.τ | λα : κ.τ | τ1 τ2

xterm ey |ù x | λx : τ .e | e1 e2

| Λα : κ.e | e @ τ

The simply typed lambda calculus

§ Strongly normalizing

§ No type-level abstractions (incl. polymorphism)!

§ Needs “base types”

§ How would you type a generic self-interpreter. . . ?

const : AÑ BÑ A
const “ λx : A.λy : B.x

Selected lambda calculi – F

xkind κy |ù ‹

| κ1 Ñ κ2

xtype τy |ù α | τ1 Ñ τ2 | @α : κ.τ

| λα : κ.τ | τ1 τ2

xterm ey |ù x | λx : τ .e | e1 e2 | Λα : κ.e | e @ τ

System F

§ Strongly normalizing

§ Parametric polymorphism (note: at any rank!)

§ “Atomic” types

§ Self-interpreter possible?

const : @α : ‹.pαÑ @β : ‹.pβ Ñ αqq
const “ Λα : ‹.λx : α.Λβ : ‹.λy : β.x

Selected lambda calculi – Fω

xkind κy |ù ‹ | κ1 Ñ κ2

xtype τy |ù α | τ1 Ñ τ2 | @α : κ.τ | λα : κ.τ | τ1 τ2

xterm ey |ù x | λx : τ .e | e1 e2 | Λα : κ.e | e @ τ

System Fω
§ Strongly normalizing

§ Parametric polymorphism (note: at any rank!)

§ Type constructors, type transformers, . . .

§ Self-interpreter possible?

const : @α : ‹.pαÑ @β : ‹.pβ Ñ αqq
const “ Λα : ‹.λx : α.Λβ : ‹.λy : β.x

The normalization barrier

Is it possible to write a self-interpreter for a strongly normalizing
λ-calculus?

§ Folklore says no.

§ Previous results: interpretation of F in Fω, Fω in F`
ω (by

encoding, for example, F @-types at ‹ as Fω type constructors
at ‹ Ñ ‹)

§ The current paper’s authors have also, previously, interpreted
F`
ω and System U in System U (which is not strongly

normalizing).

The normalization barrier

Is it possible to write a self-interpreter for a strongly normalizing
λ-calculus?

§ Folklore says no.

§ Previous results: interpretation of F in Fω, Fω in F`
ω (by

encoding, for example, F @-types at ‹ as Fω type constructors
at ‹ Ñ ‹)

§ The current paper’s authors have also, previously, interpreted
F`
ω and System U in System U (which is not strongly

normalizing).

The normalization barrier

Is it possible to write a self-interpreter for a strongly normalizing
λ-calculus?

§ Folklore says no.

§ Previous results: interpretation of F in Fω, Fω in F`
ω (by

encoding, for example, F @-types at ‹ as Fω type constructors
at ‹ Ñ ‹)

§ The current paper’s authors have also, previously, interpreted
F`
ω and System U in System U (which is not strongly

normalizing).

A proof for computable total functions

Definition

Let UnivpNÑ Nq be the set of universial functions for NÑ N: its
elements are the functions u : pNˆ Nq ãÑ N such that for every
total, computable function f : NÑ N, we have

@x P N : upvf w, xq “ f pxq

(note that v¨w here maps total, computable functions to N)

A proof for computable total functions (cont’d.)

Lemma

If u P UnivpNÑ Nq, then the Cantor-esque function
d :“ x ÞÑ upx , xq ` 1 is not total

Proof.

Suppose u P UnivpNÑ Nq and d is total; then

dpvdwq “ upvdw, vdwq ` 1 “ dpvdwq ` 1

which is a contradiction.

A proof for computable total functions (cont’d.)

Theorem

If u P UnivpNÑ Nq, then u isn’t total

Proof.

Suppose u is total. Then, @x P N, upx , xq is defined; so we have

dpxq “ upx , xq ` 1

which is a perfectly cromulent definition (since ¨ ` 1 is also total).
In other words, d would be total. This contradicts our previous
lemma.

So what about, e.g. Fω instead of N Ñ N?

If we have a self-interpreter u for Fω, the strong normalization of Fω
means pu eq has a normal form for any well-typed e; in other words, u is
total. So can we transform the previous theorem to say that u can’t exist?

Suppose we have an Fω-self-interpreter u, and let’s set
d :“ λx .λy .ppu xq xq. Then, if d vdw would be well-typed, we’d have

d vdw ”β λy .ppu vdwq vdwq ”β λy .pd vdwq

which is clearly a contradiction (it’d lead to two “competing” normal
forms v ”β λy .v). So we can transform the lemma.

However, just because u, d and vdw are well-typed, it doesn’t mean d vdw

needs to be well-typed! The diagonalization gadget is not expressible
inside Fω. The theorem hasn’t been successfully transformed!

So what about, e.g. Fω instead of N Ñ N?

If we have a self-interpreter u for Fω, the strong normalization of Fω
means pu eq has a normal form for any well-typed e; in other words, u is
total. So can we transform the previous theorem to say that u can’t exist?

Suppose we have an Fω-self-interpreter u, and let’s set
d :“ λx .λy .ppu xq xq. Then, if d vdw would be well-typed, we’d have

d vdw ”β λy .ppu vdwq vdwq ”β λy .pd vdwq

which is clearly a contradiction (it’d lead to two “competing” normal
forms v ”β λy .v). So we can transform the lemma.

However, just because u, d and vdw are well-typed, it doesn’t mean d vdw

needs to be well-typed! The diagonalization gadget is not expressible
inside Fω. The theorem hasn’t been successfully transformed!

So what about, e.g. Fω instead of N Ñ N?

If we have a self-interpreter u for Fω, the strong normalization of Fω
means pu eq has a normal form for any well-typed e; in other words, u is
total. So can we transform the previous theorem to say that u can’t exist?

Suppose we have an Fω-self-interpreter u, and let’s set
d :“ λx .λy .ppu xq xq. Then, if d vdw would be well-typed, we’d have

d vdw ”β λy .ppu vdwq vdwq ”β λy .pd vdwq

which is clearly a contradiction (it’d lead to two “competing” normal
forms v ”β λy .v). So we can transform the lemma.

However, just because u, d and vdw are well-typed, it doesn’t mean d vdw

needs to be well-typed! The diagonalization gadget is not expressible
inside Fω. The theorem hasn’t been successfully transformed!

A cheap & cheerful self-interpreter for F/Fω/F`ω

Of course, just because one particular proof of impossibility failed,
doesn’t mean self-interpretation is possible. So the first proof the
paper presents is a simple, shallow representation that only
supports an unquoter.

A cheap & cheerful self-interpreter for F/Fω/F`ω

Let’s look at the following example:

const : @α : ‹.αÑ p@β : ‹.β Ñ αq

const “ Λα : ‹.λx : α.Λβ : ‹.λy : β.x

id : @α : ‹.αÑ α

id “ Λα : ‹.λx : α.x

foo : @β : ‹.β Ñ @α : ‹.αÑ α

foo “ const @p@α : ‹.αÑ αq id

A cheap & cheerful self-interpreter for F/Fω/F`ω

For reference, after inlining the helper definitions, we have

foo “ pΛα : ‹.λx : α.Λβ : ‹.λy : β.xq @p@α : ‹.αÑ αq pΛα : ‹.λx : α.xq

A smart-ass non-solution

Why not just represent everything as itself, and set unquote :“ id?

Because foo is not in normal form, so it isn’t data! The type
application, and then the outermost term application can be
β-reduced away.

Central idea of the paper: replace the applications with
application-markers!

A cheap & cheerful self-interpreter for F/Fω/F`ω

For reference, after inlining the helper definitions, we have

foo “ pΛα : ‹.λx : α.Λβ : ‹.λy : β.xq @p@α : ‹.αÑ αq pΛα : ‹.λx : α.xq

A smart-ass non-solution

Why not just represent everything as itself, and set unquote :“ id?
Because foo is not in normal form, so it isn’t data! The type
application, and then the outermost term application can be
β-reduced away.

Central idea of the paper: replace the applications with
application-markers!

A cheap & cheerful self-interpreter for F/Fω/F`ω

For reference, after inlining the helper definitions, we have

foo “ pΛα : ‹.λx : α.Λβ : ‹.λy : β.xq @p@α : ‹.αÑ αq pΛα : ‹.λx : α.xq

A smart-ass non-solution

Why not just represent everything as itself, and set unquote :“ id?
Because foo is not in normal form, so it isn’t data! The type
application, and then the outermost term application can be
β-reduced away.

Central idea of the paper: replace the applications with
application-markers!

A cheap & cheerful self-interpreter for F/Fω/F`ω

Central idea of the paper: replace the applications with
application-markers!
Where are all the applications in our example?

foo “ pΛα : ‹.λx : α.Λβ : ‹.λy : β.xq @p@α : ‹.αÑ αq pΛα : ‹.λx : α.xq

To ensure there are no (reducable) applications left, let’s apply a
marker ˛, which is a free variable, on all terms which are applied
on either types or terms:

˛ ˛ Λα : ‹.λx : α.Λβ : ‹.λy : β.x @p@α : ‹.αÑ αq pΛα : ‹.λx : α.xq

A cheap & cheerful self-interpreter for F/Fω/F`ω

˛ ˛ Λα : ‹.λx : α.Λβ : ‹.λy : β.x @p@α : ‹.αÑ αq pΛα : ‹.λx : α.xq

Of course, ˛ needs to be polymorphic, so we’ll need to sprinkle our
code with some type applications that duplicate the types of the
originally-applied functions:

˛ @pp@α : ‹.αÑ αq Ñ @β : ‹.β Ñ p@α : ‹.αÑ αqq

˛ @p@α : ‹.αÑ p@β : ‹.β Ñ αqq const @p@α : ‹.αÑ αqq

id

A cheap & cheerful self-interpreter for F/Fω/F`ω

If we now close this by putting it under a ˛-binding λ, we have our
representation:

vfoow : Exp p@β : ‹.β Ñ @α : ‹.αÑ αq

vfoow “ λ ˛ : p@ι : ‹.ιÑ ιq.

˛ @pp@α : ‹.αÑ αq Ñ @β : ‹.β Ñ p@α : ‹.αÑ αqq

pp˛ @p@α : ‹.αÑ p@β : ‹.β Ñ αqq constq @p@α : ‹.αÑ αqq

id

With
Exp τ “ p@ι : ‹.ιÑ ιq Ñ τ

and all unquote needs to do is plug in id (the “un-marker”) as the
marker:

unquote : @α : ‹.pp@ι : ‹.ιÑ ιq Ñ αq Ñ α

unquote “ Λα : ‹.λq : p@ι : ‹.ιÑ ιq Ñ α.q id

A cheap & cheerful self-interpreter for F/Fω/F`ω

Theorem

If tu $ e : τ then tu $ vew : p@ι : ‹.ιÑ ιq Ñ τ

Theorem

If tu $ e : τ then unquote @ τ vew ÝÑ˚ e

Summary of the technique

§ Suspend reducability by marking each applied term with a free
variable

§ Process the representation by plugging in a suitable function
for the marker

But is this just a cheap trick? So what if there’s a bunch of places
where we can apply id?
Not at all!
The marker’s type just happens to be the trivial ιÑ ι in this
shallow unquoter case, but the technique generalizes by mapping
subresults (of some type) to a larger result (of some, possibly
different, type); i.e., a fold.

Summary of the technique

§ Suspend reducability by marking each applied term with a free
variable

§ Process the representation by plugging in a suitable function
for the marker

But is this just a cheap trick? So what if there’s a bunch of places
where we can apply id?

Not at all!
The marker’s type just happens to be the trivial ιÑ ι in this
shallow unquoter case, but the technique generalizes by mapping
subresults (of some type) to a larger result (of some, possibly
different, type); i.e., a fold.

Summary of the technique

§ Suspend reducability by marking each applied term with a free
variable

§ Process the representation by plugging in a suitable function
for the marker

But is this just a cheap trick? So what if there’s a bunch of places
where we can apply id?
Not at all!
The marker’s type just happens to be the trivial ιÑ ι in this
shallow unquoter case, but the technique generalizes by mapping
subresults (of some type) to a larger result (of some, possibly
different, type); i.e., a fold.

A deep self-representation of Fω

The grand result of the paper is a deep self-representation of Fω
(unlike the previous, shallow representation, this doesn’t readily
work in F or F`

ω)

§ Deep representation means the same representation supports
multiple operations (late binding of the operation)

§ Examples from the paper:
§ isAbs, isNF , size
§ unquote
§ CPS

§ I will only cover it cursorily in this talk; see the paper for
details

A deep self-representation of Fω

The grand result of the paper is a deep self-representation of Fω
(unlike the previous, shallow representation, this doesn’t readily
work in F or F`

ω)

§ Deep representation means the same representation supports
multiple operations (late binding of the operation)

§ Examples from the paper:
§ isAbs, isNF , size
§ unquote
§ CPS

§ I will only cover it cursorily in this talk; see the paper for
details

A deep self-representation of Fω

Given tu $ e : τ , first τ is transformed into vτ w by iteratively
wrapping each ‹-kinded (non-type variable) subtree in a (free type
variable) type constructor F : ‹ Ñ ‹

Example:

v@α : ‹.αÑ αw “ @α : ‹. F pF αÑ F αq

This means types at κ become types at vκw :“ p‹ Ñ ‹q Ñ κ; in
particular, types at ‹ become types at v‹w “ p‹ Ñ ‹q Ñ ‹.

A deep self-representation of Fω

Then, for vew, each λ-abstraction, application, Λ-abstraction, and
type application of the term is wrapped into calls of one of four
free variables, of types

Abs F “@α : ‹.@β : ‹. pF vαw Ñ F vβwq Ñ F vαÑ βw

App F “@α : ‹.@β : ‹. F vαÑ βw Ñ F vαw Ñ F vβw

TAbs F “@α : ‹. Strip F αÑ αÑ F vαw

TApp F “@α : ‹. F vαw Ñ @β : ‹.pαÑ F βq Ñ F vβw

A deep self-representation of Fω

Then, for vew, each λ-abstraction, application, Λ-abstraction, and
type application of the term is wrapped into calls of one of four
free variables, of types

Abs F “@α : ‹.@β : ‹. pF vαw Ñ F vβwq Ñ F vαÑ βw

App F “@α : ‹.@β : ‹. F vαÑ βw Ñ F vαw Ñ F vβw

TAbs F “@α : ‹. Strip F αÑ αÑ F vαw

where Strip F α “ @β : ‹. p@γ : ‹. F γ Ñ βq Ñ αÑ β

TApp F “@α : ‹. F vαw Ñ @β : ‹.pαÑ F βq Ñ F vβw

A deep self-representation of Fω

The representation of a term tu $ e : τ thus becomes a term
tu $ vew : Exp pλF : ‹ Ñ ‹. vτ wq, with

Exp “λα : v‹w. @F : ‹ Ñ ‹.

Abs F Ñ App F Ñ TAbs F Ñ TApp F Ñ

F pα F q

Note that Exp vτ w is still parametrized over the choice of
F : ‹ Ñ ‹, which is what ultimately allows the late-binding of the
choice of operation over the representation.

Summary

§ F applied (iteratively) only to types of kind ‹ ñ no need to
abstract F ’s type over kinds

§ Parametric (in F) HOAS representation for terms; variables
range over representations

§ A particular operation defines its own choice of F , and
implements the four “callbacks”

§ For unquote, F “ λα : ‹. α, so e.g.
app : @α : ‹. @β : ‹. pαÑ βq Ñ αÑ β

§ For isAbs, F “ λα : ‹. Bool, and so
app : @α : ‹. @β : ‹. BoolÑ BoolÑ Bool

§ For size, F “ λα : ‹. Nat, giving
app : @α : ‹. @β : ‹. NatÑ NatÑ Nat

