Gergd Erdi
http://gergo.erdi.hu/

Haskell.SG, July 2016.

http://gergo.erdi.hu/

(term) = (var)
| (term) (term)
| ‘N {var) '—' (term)
| ‘let’ (definition) .. {definition) ‘in’ {term)

(var) n= 7 .

(definitiony = {var)'="(term)

Hindley-Milner type system: Syntax

(term) = {var)
| (term) (term)
| ‘N (var) ‘" (term)
| ‘let’ {definition) .. {definition) ‘in’ {term)
| {data-con)
| ‘case' (term) ‘of' {alternative) .. {alternative)
{var) =T .
(definitiony = {var) ‘=" (term)
(data-cony = 'K |..
alternative)y == {(pat)y ‘' (term)
{pat) = {data-cony {pat) .. {pat)

| Cvary [

(o-type)y == V' (ty-var) .. (ty-var)'.' (T-type)

(t-typey == (ty-var)
| (7-type) ‘=’ (7-type)

(ty-vary == ‘a'| .

(o-type) == V' {ty-var) ..{ty-var)'.' {T-type)

{T-type) (ty-var)

| (rtype) ' (rtype)
| {ty-con) (t-type) .. (T-type)
(ty-vary == ‘a'| .

(ty-cony == ‘T |..

z:oel' 1€ lnst(o)
I'oxzor (VAR)
T'HFum -1 I'-E:m
I'-FFE:n (APP)
ezom-FEom (Lam)

I'Xze—Eum —m

Dyzomg b Ep g o = Gen(T',9) Iz:ok-FEuT
I'letz=Eyin E:: 7

(LET)

z:oel' 1€ lnst(o)
I'oxzor (VAR)
T'HFum -1 I'-E:m
A
I'-FFE:n (APP)
ezom-FEom (Lam)

I'Xze—Eum —m

Dyzomg b Ep g o = Gen(T',9) Iz:ok-FEuT
I'letz=Eyin E:: 7

(LET)

7 in VAR?
71 in LAM?
71 in LET?

W, E) = (X,7)

where
r a type context, mapping variables to types
E the expression whose type we are to infer
b a substitution, mapping type variables to types
T the inferred type of £

HM type inference algorithms

4%
W, E) = (X,7)
where
r a type context, mapping variables to types
E the expression whose type we are to infer
by a substitution, mapping type variables to types
T the inferred type of £
M
M, E,7)=X%
where
Tr a type context, mapping variables to types
E the expression to typecheck
T the expected type of £
> a substitution, mapping type variables to types

W(,EF) = (X0350%1,%0)
where
(31,71) =W, E)
(22, Tz) = W(ZlI‘, ﬂ
)y =U(Xam1 ~ T2 —)
0 fresh

W(T,EF)=(X0X503%,28)
where
(Z1,m) =W, E)
(22, Tz) = W(ZlI‘, ﬂ
D) =UXom ~ T2 —)
0 fresh

N

E F

W(T,EF)=(X0X503%,28)
where
(Z1,m) =W, E)
(22, Tz) = W(ZlI‘, ﬂ
D) =UXom ~ T2 —)
0 fresh

W(T,EF)=(X0X503%,28)
where
(Z1,m) =W, E)
(22, Tz) = W(er, ﬂ
D) =UXom ~ T2 —)
0 fresh

N
E F
\‘214211“/

W(T,EF)=(X0X503%,28)
where
(Z1,m) =W, E)
(22, Tz) = W(ZlI‘, ﬂ
D) =UXom ~ T2 —)
0 fresh

1"\ /22
E F
(%

isJust :: Maybe a -> Bool
not :: Bool -> Bool
foo x = (isJust x, not x)

isJust :: Maybe a -> Bool
not :: Bool -> Bool
foo x = (isJust x, not x)

foo.hs:1:24:
Couldn't match expected type "Bool'
with actual type "Maybe a'
In the first argument of "not', namely "x'
In the expression: not x

isJust :: Maybe a -> Bool
not :: Bool -> Bool
foo x = (isJust x, not x)

foo.hs:1:24:
Couldn't match expected type "Bool'
with actual type "Maybe a'
In the first argument of "not', namely "x'
In the expression: not x

isJust :: Maybe a -> Bool
not :: Bool -> Bool
foo x = (isJust x, not x)

ERROR "foo.hs":1 - Type error in application

*** Expression : isJust x
**x* Term P X
**xx Type : Bool

***x Does not match : Maybe a

isJust :: Maybe a -> Bool
not :: Bool -> Bool
foo x = (isJust x, not x)

ERROR "foo.hs":1 - Type error in application

*** Expression : isJust x
**x* Term P X
**xx Type : Bool

***x Does not match : Maybe a

isJust :: Maybe a -> Bool
not :: Bool -> Bool
foo x = (isJust x, not x)

So where is the error?

Typings

» To implement a compositional type system with the same
behaviour as HM, we need to track more intermediate results
than just the types of subexpressions

» The context of a variable occurrence can affect the type of
some encolsing scope

foo x = (isJust x, not x)

Typings

» To implement a compositional type system with the same
behaviour as HM, we need to track more intermediate results
than just the types of subexpressions

» The context of a variable occurrence can affect the type of
some encolsing scope

foo x = (isJust x, not x)

isJust x :: Bool
z 2 Maybe o

Typings

» To implement a compositional type system with the same
behaviour as HM, we need to track more intermediate results
than just the types of subexpressions

» The context of a variable occurrence can affect the type of
some encolsing scope

foo x = (isJust x, not x)

not z :: Bool
z 2 Bool

Typings

» To implement a compositional type system with the same
behaviour as HM, we need to track more intermediate results
than just the types of subexpressions

» The context of a variable occurrence can affect the type of
some encolsing scope

foo x = (isJust x, not x)

isJust x :: Bool not z :: Bool
x:: Maybe a =< 1x: Bool

Typings

» To implement a compositional type system with the same
behaviour as HM, we need to track more intermediate results
than just the types of subexpressions

» The context of a variable occurrence can affect the type of
some encolsing scope

foo x = (isJust x, not x)

isJust x :: Bool not z :: Bool
x:: Maybe a =< 1x: Bool

» So we will assign to subexpresisons, instead of types,
something called typings:
isJust x :: {x :: Maybe a} + Bool
not z :: {z :: Bool} - Bool

(z::Agkm)el’ A 7= Freshen(Ag - 70)

N—z:ApRT (VAR)
Fzo{zzalFo)FEx AR a fresh
(zum)eAV (¢ AAT =) (Lan)

F'Xe— E:zA\zk1 — 1

'-Fu: AT
I'EE:Ay 1
I'EFE:ART

(APP)

where « fresh
(Av E) = U(Ala AQaTl ~ T2 — a)

T =X«

Lo(zu{z:ala) FE = Aok 1 « fresh
[, (z: Af - So10) FE:ART
I'kletz=Eyin E: A"+ X7

(LET)

where (Ag, o) = U(Ao, 70 ~ Ao(2))
Ay = A
(A, 5) = U(A,A)

Where

is let-polymorphism?

If (x:: Ag - 79) € T, then x is polymorphic iff z ¢ Ag:
(Ao m1)€el A+ 7 € Freshen(Ag - 7p)
'z ART
This results in two occurrences of z to yield a constraint that
their types match only if ze A (< z€ Ag)
Ax+— FEintroduces z:: {z::a} —atol, ie xis
monomorphic

let x = Ep in F introduces z:: A 7 to I' after removing =
from the typing of Ey, i.e. z is polymorphic in E

Implementation: hm-compo

Both linear and compositional type checking implemented for our
model language:
» Concrete syntax (parser & pretty printer)
» Indentation-based parsing is a nightmare
» haskell-src-exts to the rescue!
» unification-fd-based representation
> Immediate rewriting of type-meta-variables: no delayed occurs
checks
» Explicit zonking
class (Unifiable t, Variable v, Monad m) = MonadTC t vm
| mt— v,mv— twhere
freshVar::mwv
readVar :: v— m (Maybe (UTerm t v))
writeVar::v— UTerm t v— m ()
zonk :: (Traversable t, MonadTC't v m)
= UTermtv— m (UTerm tv)

http://github.com/gergoerdi/hm-compo

Implementation: hm-compo

Both linear and compositional type checking implemented for our
model language:

» Code mostly shared between the two typecheckers

data TC ctx err s loc a

instance MonadReader ctz (TC ctx err s loc)
instance MonadError err (TC ctx err s loc)
instance MonadTC Ty0 (MVar s) (TC ctz err s loc)

freshTVar:: TC ctx err s loc TVar

» Representation of I is different: there are no o-types in the
compositional type system.

http://github.com/gergoerdi/hm-compo

Motivating example

Input

isJust :: Maybe a -> Bool
not :: Bool -> Bool
foo x = MkPair (isJust x) (not x)

Output of hm-compo

demo/pair.hm (13,8):
MkPair (not x) (isJust x)

Cannot unify 'Bool' with 'Maybe a' when unifying 'x':
Cannot unify 'Bool' with 'Maybe a' in the following context:
MkPair (not x) isJust x
Bool - Pair Bool Bool Bool
X Bool Maybe a

id :: a =+ a
const :: a =+ b+ a
fix :: (a +a) » a

flip :: (a+b+c) »b~+a-~+c
foldr :: (a2 b-=+b) - b -+ List a =+ b

map :: (a =+ b) - List a =+ List b
undefined :: a
undefinedl :: a

undefined2 :: a

» Compositional Explanation of Types and Algorithmic
Debugging of Type Errors, Olaf Chitil (2001)

» Compositional Type Checking for Hindley-Milner Type
Systems with Ad-hoc Polymorphism, Gergd Erdi (2011)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.818
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.818
https://gergo.erdi.hu/projects/tandoori/
https://gergo.erdi.hu/projects/tandoori/

	The Hindley-Milner type system
	Hindley-Milner is linear
	A compositional type system for HM
	Implementation
	Demo time

