
Hobbist FPGA development with Kansas Lava

Gergő Érdi
http://unsafePerform.IO/

Haskell.SG Meetup, May 2015.

http://unsafePerform.IO/

Section 1

Introduction to FPGAs

What is an FPGA?

I FPGA stands for Field-Programmable Gate Array

I Conceptually, a bunch of logic gates that can be wired up in a
software-defined configuration

From http://www.fpga-site.com/

http://www.fpga-site.com/

What is an FPGA?

I FPGA stands for Field-Programmable Gate Array

I Conceptually, a bunch of logic gates that can be wired up in a
software-defined configuration

From http://www.fpga-site.com/

http://www.fpga-site.com/

Why would you want to use one?

I In real life: cheap (in low volume) and fast-turnaround
alternative to custom silicon chips

I For hobbists: building complicated digital circuits without all
those messy wires. . .

Kitchen timer prototype by yours truly

Circuit design with FPGAs

1. The FPGA configuration is usually specified on the
register-transfer level of abstraction (RTL): combinational
logic + registers

2. RTL description is turned into list of components and their
connections (netlist)

3. Based on the actual hardware (the concrete FPGA chip),
these are mapped to physical components on the board

4. For each component, a particular instance is chosen, and
wiring routes are decided (place-and-routing)

In practice, you only have control over step 1, the rest is
proprietary.

Circuit design with FPGAs

1. The FPGA configuration is usually specified on the
register-transfer level of abstraction (RTL): combinational
logic + registers

2. RTL description is turned into list of components and their
connections (netlist)

3. Based on the actual hardware (the concrete FPGA chip),
these are mapped to physical components on the board

4. For each component, a particular instance is chosen, and
wiring routes are decided (place-and-routing)

In practice, you only have control over step 1, the rest is
proprietary.

Hardware description languages

VHDL

D <= not Q;

process (c l k)
begin

i f r i s i n g e d g e (c l k) then
Q <= D;

end i f ;
end process ;

Hardware description languages

Verilog

d = ! q ;

always @(posedge c l k)
q <= d ;

Hardware description languages

Kansas Lava

q = r e g i s t e r Fa l se d
where

d = b i tNot q

Kansas Lava

q = r e g i s t e r Fa l se d
where

d = b i tNot q

I Both Verilog and VHDL are first-order languages with poor
abstraction and type construction facilities

I Lava is a DSL embedded in Haskell
I There’s a whole family of Lava forks by now; Kansas Lava

seemed the most usable and recently updated when I first
looked into it, circa 2012

I Haskell sharing is reified into shared wires (see Type-Safe
Observable Sharing in Haskell and data-reify by Andy Gill)

I Kansas Lava and the libraries around it has had some bitrot
which meant there was no way to compile the version on
Hackage with GHC > 7.4

I I took over maintainance of the stable Kansas Lava branch

Kansas Lava

q = r e g i s t e r Fa l se d
where

d = b i tNot q

I Both Verilog and VHDL are first-order languages with poor
abstraction and type construction facilities

I Lava is a DSL embedded in Haskell
I There’s a whole family of Lava forks by now; Kansas Lava

seemed the most usable and recently updated when I first
looked into it, circa 2012

I Haskell sharing is reified into shared wires (see Type-Safe
Observable Sharing in Haskell and data-reify by Andy Gill)

I Kansas Lava and the libraries around it has had some bitrot
which meant there was no way to compile the version on
Hackage with GHC > 7.4

I I took over maintainance of the stable Kansas Lava branch

Section 2

Enigma

The Enigma Machine

I German symmetric-key cipher machine originally from the
’20’s.

I Composition of several permutations. . .

I . . . some of which change (rotate) as the input stream is
processed

I Initial configuration: plugboard, some rotors with notches,
reflector

I Running configuration: rotation of rotors

I Electro-mechanical implementation

The Enigma Machine

The Enigma Machine

Enigma in Cryptol

I Cryptol is a DSL for cryptographic algorithms

I There’s a Cryptol implementation of the Enigma encryption
scheme in the Programming Cryptol book

I The idea for this talk came from Rishiyur S. Nikhil who
showed how he turned the Cryptol spec into Bluespec,
another, functional-ish HDL

I So let’s do the same in Kansas Lava!

I I will not go into the specifics of the Cryptol implementation
in this talk

I But all the function names here will match up with the
Cryptol implementation

Enigma in Cryptol

I Cryptol is a DSL for cryptographic algorithms

I There’s a Cryptol implementation of the Enigma encryption
scheme in the Programming Cryptol book

I The idea for this talk came from Rishiyur S. Nikhil who
showed how he turned the Cryptol spec into Bluespec,
another, functional-ish HDL

I So let’s do the same in Kansas Lava!

I I will not go into the specifics of the Cryptol implementation
in this talk

I But all the function names here will match up with the
Cryptol implementation

Section 3

Enigma in Kansas Lava

Code available at
https://github.com/gergoerdi/enigma-kansas-lava/

https://github.com/gergoerdi/enigma-kansas-lava/

Types

Kansas Lava uses the sized-types package for container types
that specify their size precisely in their type.

type Permutat ion a = Matr i x a a
type Rotor a = Matr i x a (a , Bool)

type L e t t e r = X26
type Plugboard = Permutat ion L e t t e r
type R e f l e c t o r = Permutat ion L e t t e r

type Decoded c l k n = Matr i x n (S i g n a l c l k Bool)

enigma : : (C lock c l k , S i z e n)
=> Plugboard −> Matr i x n (Rotor L e t t e r) −> R e f l e c t o r
−> Matr i x n L e t t e r
−> S i g n a l c l k (Enabled L e t t e r)
−> S i g n a l c l k (Enabled L e t t e r)

Permutation

Given the decoded representation we have, a static permutation is
just a reshuffling of the wires:

permuteBwd : : (S i z e n)
=> Permutat ion n
−> Decoded c l k n
−> Decoded c l k n

permuteBwd p = Matr i x . ixmap (p !)

permuteFwd : : (S i z e n)
=> Permutat ion n
−> Matr i x n (S i g n a l c l k Bool)
−> Matr i x n (S i g n a l c l k Bool)

permuteFwd p = Matr i x . ixmap $ \ i −>
maybe (e r r o r ”Not s u r j e c t i v e ”) f s t $
f i n d ((== i) . snd) $ Matr i x . assocs p

Rotating a rotor

Bit-rotation on the decoded input can be used to implement the
rotating rotors.

rotateFwd : : (S i z e a , Rep a , I n t e g r a l a)
=> S i g n a l c l k a −> Decoded c l k a −> Decoded c l k a

rotateFwd r = onB i t s (r o l r)

rotateBwd : : (S i z e a , Rep a , I n t e g r a l a)
=> S i g n a l c l k a −> Decoded c l k a −> Decoded c l k a

rotateBwd r = onB i t s (r o r r)

onB i t s : : (S i z e n , Rep n)
=> (S i g n a l c l k (Uns igned n) −> S i g n a l c l k (Uns igned n))
−> Decoded c l k n −> Decoded c l k n

onB i t s f = unpackMatr ix . b i t w i s e . f . b i t w i s e . packMatr i x

A full rotor

A full rotor consists of a rotation, a permutation, and, when the
previous rotor has a notch at its current position, updating the
rotation.

type Rotor a = Matr i x a (a , Bool)

rotorFwd : : (S i z e a , Rep a , I n t e g r a l a)
=> Rotor a −> S i g n a l c l k Bool −> S i g n a l c l k a
−> Decoded c l k a
−> (S i g n a l c l k Bool , S i g n a l c l k a , Decoded c l k a)

rotorFwd r o t o r r o t a t eTh i s r s i g = (ro ta t eNex t , r ’ , s i g ’)
where

(p , no t che s) = (fmap f s t &&& fmap snd) r o t o r
r o t a t eNex t = packMatr i x (pureS <$> notche s) . ! . r
r ’ = mux r o t a t eTh i s (r , l o o p i n g I n cS r)
s i g ’ = rotateFwd r >>> permuteFwd p $ s i g

A full rotor

A full rotor consists of a rotation, a permutation, and, when the
previous rotor has a notch at its current position, updating the
rotation.

type Rotor a = Matr i x a (a , Bool)

rotorBwd : : (S i z e a , Rep a , I n t e g r a l a)
=> Rotor a −> S i g n a l c l k a −> Decoded c l k a
−> Decoded c l k a

rotorBwd r o t o r r = permuteBwd p >>> rotateBwd r
where

p = fmap f s t r o t o r

Lining up the rotors

We need to thread through the signal carrying the rotation trigger:

j o i nR o t o r s : : (S i z e n , . . .)
=> Matr i x n (Rotor a)
−> Matr i x n (S i g n a l c l k a)
−> Decoded c l k a
−> (Mat r i x n (S i g n a l c l k a) , Decoded c l k a)

j o i nR o t o r s r o t o r s r s s i g = (rs ’ , s i g ’)
where

(r s ’ , (, s i g ’)) = Matr i x . scanR s t ep
((high , s i g) , z i pMa t r i x r o t o r s r s)

s t ep ((r o t a t eTh i s , x) , (r o t o r , r)) =
l e t (ro ta t eNex t , r ’ , x ’) = rotorFwd r o t o r r o t a t eTh i s r x
i n (r ’ , (r o ta t eNex t , x ’))

Lining up the rotors

Again, it’s much simpler backwards:

import q u a l i f i e d Data . Fo l d ab l e as F

backS i gna l : : (S i z e n , . . .)
=> Matr i x n (Rotor a) −> Matr i x n (S i g n a l c l k a)
−> Decoded c l k a
−> Decoded c l k a

ba ckS i gna l r o t o r s r s s i g = F . f o l d r (uncurry rotorBwd) s i g $
z i pMa t r i x r o t o r s r s

Putting it all together

enigmaLoop : : (C lock c l k , S i z e n , Enum n)
=> Plugboard −> Matr i x n (Rotor L e t t e r) −> R e f l e c t o r
−> Matr i x n (S i g n a l c l k L e t t e r) −> Decoded c l k L e t t e r
−> (Mat r i x n (S i g n a l c l k L e t t e r) , Decoded c l k L e t t e r)

enigmaLoop p lugboa rd r o t o r s r e f l e c t o r r s s i g 0 = (rs ’ , s i g 5)
where

s i g 1 = permuteFwd p lugboa rd $ s i g 0
(r s ’ , s i g 2) = j o i nR o t o r s r o t o r s r s s i g 1
s i g 3 = permuteFwd r e f l e c t o r s i g 2
s i g 4 = backS i gna l r o t o r s r s s i g 3
s i g 5 = permuteBwd p lugboa rd s i g 4

Adding state

The key idea is to have a register for each rotor’s rotation, which
we only update when there is input available.

enigma : : (C lock c l k , S i z e n , Enum n)
=> Plugboard −> Matr i x n (Rotor L e t t e r) −> R e f l e c t o r
−> Matr i x n L e t t e r
−> S i g n a l c l k (Enabled L e t t e r)
−> S i g n a l c l k (Enabled L e t t e r)

enigma p lugboa rd r o t o r s r e f l e c t o r r s 0 i n pu t =
packEnab led ready l e t t e rOu t

where
(ready , l e t t e r I n) = unpackEnabled i npu t
s i g = decode l e t t e r I n
(r s ’ , s i g ’) = enigmaLoop p lugboa rd r o t o r s r e f l e c t o r r s s i g
l e t t e rOu t = encode s i g ’
r s = Matr i x . zipWith rReg r s 0 r s ’

rReg r0 r ’ = f i x $ \ r −> r e g i s t e r r0 $ mux ready (r , r ’)

Demo unit

For this demonstration, I’m using a Papilio One FPGA dev board
based on the Xilinx Spartan 3E chip. The peripherals are built on a
breadboard and are also driven by Kansas Lava code:

I Input: keyboard via a PS/2 connector

I Output: 1602 LCD with 4-bit semi-parallel interface

I Reset button

	Introduction to FPGAs
	Enigma
	Enigma in Kansas Lava

