
Pattern Synonyms (Extended version)

Matthew Pickering
University of Oxford

Oxford, UK
matthew.pickering@cs.ox.ac.uk

Gergő Érdi
Standard Chartered Bank ∗

Singapore
gergo@erdi.hu

Simon Peyton Jones
Microsoft Research

Cambridge, UK
simonpj@microsoft.com

Richard A. Eisenberg
Bryn Mawr College

Bryn Mawr, PA, USA
rae@cs.brynmawr.edu

Abstract
Pattern matching has proven to be a convenient, expressive way of
inspecting data. Yet this language feature, in its traditional form, is
limited: patterns must be data constructors of concrete data types.
No computation or abstraction is allowed. The data type in question
must be concrete, with no ability to enforce any invariants. Any
change in this data type requires all clients to update their code.

This paper introduces pattern synonyms, which allow program-
mers to abstract over patterns, painting over all the shortcomings
listed above. Pattern synonyms are assigned types, enabling a com-
piler to check the validity of a synonym independent of its definition.
These types are intricate; detailing how to assign a type to a pattern
synonym is a key contribution of this work. We have implemented
pattern synonyms in the Glasgow Haskell Compiler, where they
have enjoyed immediate popularity, but we believe this feature could
easily be exported to other languages that support pattern matching.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Haskell, pattern matching, functional programming

1. Introduction
You are writing a prototype type-checker for your new compiler, so
you need a simple structure for your types. Here is one possibility:

type TyConName = String
data Type = TyApp TyConName [Type]

The type Int → Int would thus be represented like this:

TyApp "->" [TyApp "Int" [],TyApp "Int" []]

Building values like this is tiresome, so we can use a function:

mkFunTy t1 t2 = TyApp "->" [t1 , t2]
intTy = TyApp "Int" []

Now we can write (intTy ‘mkFunTy ‘ intTy) to conveniently
construct the type. But what about pattern matching? If we want to
decompose a Type , Haskell forces you do to so concretely, like this

∗Gergő Érdi is employed by Standard Chartered Bank. This paper has been
created in a personal capacity and Standard Chartered Bank does not accept
liability for its content. Views expressed in this paper do not necessarily
represent the views of Standard Chartered Bank.

funArgTy :: Type → Type
funArgTy (TyApp "->" [t1 ,]) = t1

We would prefer to abstract the details away and write

pattern FunTy t1 t2 = TyApp "->" [t1 , t2]

funArgTy (FunTy t1) = t1

defining FunTy as a synonym for the TyApp application, and using
it as a pattern in funArgTy .

This paper describes one way to add support for pattern ab-
straction in Haskell. Allowing this new form of abstraction enables
programmers to capitalise on one of the great successes of modern,
typed functional programming languages: pattern matching. Defin-
ing a function via pattern matching recalls programming’s math-
ematical roots, is declarative, and is universal within the Haskell
ecosystem; it is thus prudent to build upon this success. Abstracting
over patterns is a well-studied problem (§9), but our implementation
experience threw up a long series of unexpected challenges. Our
contribution is not simply the idea of abstracting over patterns, but
rather the specifics of its realisation in a full-scale language and
optimising implementation. In particular, we are the first to deal, in
full generality, with pattern abstraction over patterns that involve
existentials, GADTs, provided constraints, and required constraints.
Our contributions are these:

• We describe pattern synonyms, a complete, fully implemented,
and field-tested extension to the Haskell language.

• Our design accommodates both unidirectional and bidirectional
patterns (§4.1-4.3), named fields (§4.4), infix synonyms (§4.5),
and a “bundling” mechanism for import/export (§4.7).

• Uniquely, our design also accommodates Haskell and GHC’s
numerous extensions to basic pattern matching. The features that
have a major impact are: view patterns and overloaded literals
(§3.1), existentials (§3.2), and GADTs (§3.3).

• We provide a precise semantics for pattern synonyms, subtly
different than those defined by macro expansion (§5).

• We designed and implemented pattern signatures that play the
same role for pattern synonyms that ordinary type signatures do
for functions (§6). A pattern signature needs more structure than
a value signature, something we did not at first realise.

• We describe a modular implementation that supports separate
compilation, and yet, for simple patterns, compiles just as
efficiently as direct concrete pattern matching (§7).

• We discuss the usage that our implementation1 has seen in real-
world Haskell libraries (§8).

There is a rich literature of related work, as we discuss in §9.

1 The details in this paper pertain to GHC 8.0.1 and above. Releases since
GHC 7.8 support pattern synonyms, but several details have evolved since.

2. Motivation
We first describe three use cases for pattern synonyms.

2.1 Abstraction
As described in the introduction the primary motivation for pattern
synonyms is abstraction. We have seen a simple example there.
Here is a slightly more involved one.

Consider the abstract data type Seq which represents double-
ended sequences2. It provides efficient support for many more
operations than built-in lists but at the cost of a more complicated
internal representation. It is common to see code which uses view
patterns and the provided view functions in order to simulate pattern
matching. With pattern synonyms, we can do much better.

The library provides a view function viewl which projects a
sequence to a data type which allows a user to inspect the left-most
element. Using this function we can define a collection of pattern
synonyms Nil and Cons which can be used to treat Seq as if it were
a cons list.

data ViewL a = EmptyL | a :< Seq a

viewl :: Seq a → ViewL a

pattern Nil :: Seq a
pattern Nil ← (viewl → EmptyL) where

Nil = empty

pattern Cons :: a → Seq a → Seq a
pattern Cons x xs ← (viewl → x :< xs) where

Cons x xs = x <| xs
In the code above, we use explicitly bidirectional pattern synonyms

(§4.3), which can have a different meaning as a pattern (as specified
after the← on the first line of the definitions) and as an expression
(as specified after the where). Being able to specify the pattern
meaning and the expression meaning separately is critical here as a
view pattern cannot ever be used in an expression.

We don’t dwell further here as this desire is extensively stud-
ied. Many more motivating examples can be found in prior work
including that of Wadler (1987) and Burton et al. (1996).

2.2 Readability
Pattern synonyms can also be used to improve readability. DSH3

(Database-Supported Haskell) is a real-world example of a package
which uses pattern synonyms to do so. DSH provides a deeply-
embedded domain-specific language and also an optimising query
compiler. There is a simple core representation for expressions.
One of the compiler passes is a normalisation step which rewrites
expressions into a normal form. As the core data type is quite simple,
it would be opaque to write the normalisation rules in terms of the
basic constructors. The authors instead choose to define pattern
synonyms which reduce the verbosity by giving names to complex
patterns.

One of their rewrite rules is to replace length xs ≡ 0 with
null xs . We can define special patterns which correspond to equality
expressions, application of the length function, and the constant 0.
The following example is slightly modified from their code:

pattern e1 :== e2 ← BinOp (SBRelOp Eq) e1 e2
pattern PLength e ← AppE1 Length e
pattern Zero ← Lit (ScalarV (IntV 0))

With these pattern synonyms, the normalisation step becomes
much easier to read.

2 We specifically consider the implementation provided in the containers
package – https://hackage.haskell.org/package/containers-0.
5.7.1/docs/Data-Sequence.html
3 https://hackage.haskell.org/package/DSH-0.12.0.1

normalise e =
case e of

PLength xs :== Zero → mkNull xs
...

Using pattern synonyms to give names to complex patterns is an
important analogue to naming complex expressions. Giving names
signals intent and allows users to write self-documenting code.

2.3 Polymorphic Pattern Synonyms
By using type classes and view patterns, it is possible to define
pattern synonyms which work for many different data types. We
call these polymorphic pattern synonyms due to the fact that the
head of the type of the scrutinee is a type variable. Usually pattern
synonyms are monomorphic in the sense that the head is fixed at
definition to a particular type constructor.

We can define a type class which includes only the necessary
methods to implement a particular abstract specification for a data
type. Programs can be written against this interface and the concrete
representation chosen later. The main advantage of this approach
is the appearance of a normal Haskell program. This style of
programming has long been possible but pattern synonyms add a
convenient gloss to hide necessary internal plumbing. The following
example is modified from Burton et al. (1996).

class ListLike f where
nil :: f a
cons :: a → f a → f a

nilMatch :: f a → Bool
consMatch :: f a → Maybe (a, f a)

pattern Nil :: ListLike f ⇒ f a
pattern Nil ← (nilMatch → True) where

Nil = nil

pattern Cons :: ListLike f ⇒ a → f a → f a
pattern Cons x xs ← (consMatch → Just (x , xs))

where
Cons x xs = cons x xs

The methods in ListLike provide exactly the parts necessary
to implement Nil and Cons . We can then implement this class for
many different definitions of lists.

type DList a = [a]→ [a]
data SnocList a = Empty | Snoc (SnocList a) a
data JoinList a

= JNil | Unit a | JoinList a ‘JoinTree‘ JoinList a

instance ListLike [] where ...
instance ListLike DList where ...
instance ListLike JoinList where ...

Using Cons and Nil we can write programs which are generic
in the type of list representation we choose.

listLength :: ListLike f ⇒ f a → Int
listLength Nil = 0
listLength (Cons xs) = 1 + listLength xs

3. Pattern Matching in Haskell
Before we can introduce our extension, we first describe our baseline:
pattern matching in Haskell. Haskell pattern matching, and GHC’s
extensions thereof, lead to a number of challenges for our goal of
abstraction.

Figure 1 gives the syntax for the subset of Haskell patterns
that we treat in this paper. Variables and constructor patterns are
conventional; we will discuss view patterns in §3.1. The actual

https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Sequence.html
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Sequence.html
https://hackage.haskell.org/package/DSH-0.12.0.1

var, x ::= . . . Variable name
conid,K ::= . . . Data constructor name
conop ::= . . . Data constructor operator
expr ::= . . . Expression
pat ::= var Variable pattern

| ‘ ’ Wildcard pattern
| conid pat1 . . . patn Constructor pattern
| pat1 conop pat2 Infix constructor pattern
| expr ‘→’ pat View pattern

Figure 1. The syntax of patterns in Haskell

syntax is much richer, including literals, as-patterns, tuples, etc., but
it is all syntactic sugar and this subset exposes all the challenges.

3.1 View Patterns and Literal Patterns
View patterns (Figure 1) are an extension to the basic pattern
matching syntax which allows computation to be performed during
pattern matching. A view pattern f → p consists of two parts – a
function f (commonly referred to as the view function) and a pattern
p. When a value v is matched against this view pattern, we compute
(f v), and match the result against the pattern p. For example:

uncons :: [a]→ Maybe (a, [a])

safeHead :: [a]→ Maybe a
safeHead (uncons → Just (x ,)) = Just x
safeHead = Nothing

In this example the view function is uncons , a function which
tries to detach the first element from a list. By using it inside a view
pattern, we can then match on the Just constructor of the result of
the computation.

Although view patterns are a GHC extension, they are simply
a generalisation of standard Haskell’s overloaded numeric literal
patterns. For example:

f :: (Eq a,Num a)⇒ a → a
f 0 = 0
f n = n + 1

means the same as

f ((≡ 0)→ True) = 0
f n = n + 1

The view pattern compares the value with zero (using whatever
definition for≡ has been supplied with the argument’s Eq instance),
and matches the result of that comparison with True .

Notice that f works only on argument types that are in class
Num (so that we can build a zero value) and Eq . In general, a view
pattern may require an arbitrary set of type classes. For example,
consider this:

foo :: (Ord t ,Bounded t)⇒ Tree t → Maybe t

g :: (Ord b,Bounded b)⇒ ([a],Tree b)→ (a, b)
g ([x], foo → Just y) = (x , y)

Since the view function foo requires (Ord t ,Bounded t), so does
g . These are the required constraints, a concept that will become
more important in the context of pattern synonyms; see §6.1.

3.2 Pattern Matching with Existentials
In Haskell a data constructor may bind an existential type variable.
For example:

data T where
MkT :: a → (a → Int)→ T

f :: T → Int
f (MkT x g) = g x + 1

foo :: [Int]
foo = map f [MkT ’c’ ord ,MkT 5 id]

The data constructor MkT binds, essentially, three pieces of infor-
mation: the type chosen for a , a value of type a , and a function that
can convert a value of type a into an Int . Accordingly, given two
values of type T , the types of the data inside might be different,
as the caller of the MkT constructor can choose any type for a .
Pattern matching on MkT , such as in function f , brings (x :: a) and
(g :: a → Int) into scope, where the type variable a is (invisibly)
bound by the same pattern.

The data constructor may also bind type class constraints. For
example:

data T2 where
MkT2 :: Show a ⇒ a → (a → Int)→ T2

f2 :: T2 → String
f2 (MkT2 x g) = show x ++ show (g x)

foo2 :: [String]
foo2 = map f2 [MkT2 ’c’ ord ,MkT2 5 id]

Now MkT2 wraps up four data: the type a , a value of type a , a
function of type a → Int , and the Show a dictionary4. When
f2 matches against MkT2 , the Show operations become available
inside the match; hence our ability to call (show x) in f2 ’s right
hand side. Notice that there is no Show constraint in f2 ’s type;
rather it is provided by the pattern match.

3.3 GADT Pattern Matching
With GHC’s GADTs extension, pattern matching can also perform
local type refinement (Peyton Jones et al. 2006). For example:

data Expr a where
IntExpr :: Int → Expr Int
...

addToExpr :: Expr a → a → a
addToExpr (IntExpr i) j = i + j

By matching on IntExpr we refine the type variable a to Int (as
IntExpr i :: Expr Int). Thus, the second argument is now also
known to be of type Int . We can thus add the two arguments in
order to produce a result of type Int .

However, this is just convenient syntactic sugar for the ability of
data constructors to bind type constraints. The data type Expr can
equivalently be written5

data Expr a where
IntExpr :: (a∼Int)⇒ Int → Expr a
...

So, just as described in the previous section, pattern matching against
IntExpr will provide the constraint (a∼Int) to the body of the
pattern match.

4. Pattern Synonyms
In this section we introduce our new extension, pattern synonyms.
The new syntax is given in Figure 2. We add one new top-level
declaration form, introduced by the keyword pattern. We make
no changes to the syntax of patterns.

4 A dictionary is GHC’s runtime witness for class constraints. It is essentially
a record containing implementations of all of the methods in the Show class.
5 Here, we are using Haskell’s (∼) type equality operator.

psyn := ‘pattern’ lhs ‘=’ pat Implicitly bidir.
| ‘pattern’ lhs ‘←’ pat Unidirectional
| ‘pattern’ lhs ‘←’ pat ‘where’ Explicitly bidir.

lhs ‘=’ expr

lhs ::= conid var1 . . . varn Prefix notation
| var1 conop var2 Infix notation
| conid ‘{’ var1‘,’ . . . ‘,’varn ‘}’ Record notation

sig ::= ‘pattern’ conid ‘::’ pat_ty Pattern signature
pat_ty ::= req prov type Pattern type
req ::= 〈empty〉 | ctx ‘⇒’ Required context
prov ::= 〈empty〉 | ctx ‘⇒’ Provided context

Figure 2. The syntax of pattern synonym declarations.

4.1 Implicitly Bidirectional Patterns
The simplest form of pattern synonym is an implicitly bidirectional
pattern synonym, written with a “=” sign:

pattern Just2 a b = Just (a, b)

f :: Maybe (Int , Int)→ Int
f (Just2 x y) = x + y

foo :: Int
foo = f (Just2 3 2)

The pattern declaration introduces the pattern synonym Just2 . It
can be used as a pattern (e.g. function f); matching on Just2 x y
will behave like matching on the nested pattern Just (x , y). Like
a data constructor, Just2 can also be used in an expression (e.g.
in foo); the expression Just2 e1 e2 behave like the expression
Just (e1, e2).

Several points are worth noting:

• Just like data constructors, pattern synonyms must start with
a capital letter or “:”. This is why we continue to use the non-
terminal conid in Figure 2.

• The pattern on the right hand side must bind exactly the same
variables as those bound on the left hand side.

• The right hand side can, of course, be nested to arbitrary depth,
and can use pattern synonyms. For example:

pattern Complex :: a → b → c
→ (Maybe ([a], b),String , c)

pattern Complex a b c = (Just2 [a] b, "2", c)

• Type inference works for pattern synonym declarations just as
for value declarations, so GHC infers

pattern Just2 :: a → b → Maybe (a, b)

Programmers can also specify an explicit type signature for the
pattern synonym. Such signatures are called pattern signatures,
and we discuss them in more detail in §6. Meanwhile we will
often use pattern signatures informally.

4.2 Unidirectional Pattern Synonyms
In a bidirectional pattern synonym such as Just2 , the right-hand
side, Just (a, b), is used both as a pattern (when matching) and as
an expression (when constructing). This works nicely because many
Haskell patterns, by design, look like expressions. But not all! What
would this declaration mean?

pattern Head x = x : -- Not right yet

Here, Head would make sense as a pattern, but not in an expression.
What would it mean to say

foo = Head 3 -- Bizarre??

View patterns are an even clearer example, where it makes no sense
to interpret the pattern as an expression.

Nevertheless it is often convenient to define unidirectional
pattern synonyms like Head , which we indicate using “←” instead
of “=” in the declaration

pattern Head :: a → [a]
pattern Head x ← x : -- Unidirectional

The back-arrow arrow indicates that Head can be used in patterns,
but not in expressions. Because of this, the lexical scoping rule for
unidirectional pattern synonyms is relaxed: the pattern on the right
must bind all the variables bound on the left, but it is free to bind
more.

4.3 Explicitly Bidirectional Pattern Synonyms
Sometimes, however, you really want a bidirectional pattern syn-
onym (i.e. one that you can use in both patterns and expressions)
where there is computation to do in both directions. A classic exam-
ple is the conversion from rectangular to polar coordinates:

data Point = CP Float Float -- x,y coords
pointPolar :: Point → (Float ,Float)
pointPolar (CP x y) = ...

polarPoint :: Float → Float → Point
polarPoint r a = ...

pattern Polar :: Float → Float → Point
pattern Polar r a ← (pointPolar → (r , a))

where
Polar r a = polarPoint r a

Here, the data type Point is represented using Cartesian coordinates.
pointPolar and polarPoint are (ordinary Haskell) functions which
allow points to be viewed and constructed, respectively, using polar
coordinates. Finally, the pattern synonym Polar uses a view pattern
to match a Point , using pointPolar to extract its polar coordinates.

The new piece is the where clause on the pattern declaration,
which signals an explicitly bidirectional pattern synonym. It allows
the programmer to specify how Polar should behave when used
in an expression. The where clause has a single definition that
looks exactly like a normal function definition, except that the
function being defined, Polar , starts with a capital letter. Note
that the variables bound in the first line (r and a) are not in scope in
the where clause; there is no name shadowing in this example. A
where clause is not allowed for an implicitly bidirectional synonym
(§4.1).

We refer to the definition in the where clause as the builder,
while the pattern after the “←” is the matcher. Apart from having
to have the same type, there is no required relationship between
the matcher and the builder. One might expect that they should
be inverses of each other, but we do not impose such a restriction.
Indeed, real world usage has demonstrated how this asymmetry can
be used to great effect. For one example, see (Jaskelioff and Rivas
2015).

Of course, if this transformation is expensive then pattern match-
ing becomes very expensive. Programmers are used to pattern match-
ing being a very cheap operation and might be surprised when an
innocuous-looking program has poor performance. This potential
trap is inevitable with the design, where we are explicitly providing
succinct syntax for arbitrary operations.

4.4 Pattern Synonyms with Named Fields
Standard Haskell data type declarations allow the fields of a data
constructor to be named, thus:

data Point = CP {x :: Float , y :: Float }
diagX :: Point → Point
diagX (CP {x = xp}) = CP {x = xp, y = xp}

You can use these field names in both pattern matching and construc-
tion, as shown in function diagX . The advantage is that it makes
the program more robust to changes in the data type declaration,
such as adding fields, or changing their order. Note that CP still has
its ordinary curried type CP :: Float → Float → Point , and can
also be called with positional arguments, e.g. (CP xp yp).

We extended this named-field facility to pattern synonyms.
Referring to the syntax in Figure 2, we can define the Polar pattern
synonym of §4.3 like this:

pattern Polar :: Float → Float → Point
pattern Polar {r , a } ← (pointPolar → (r , a))

where
Polar rp ap = polarPoint rp ap

The curly braces on the left hand side of the pattern synonym
declaration enclose a list of the named fields. Like ordinary data
constructors, Polar can still be used with positional arguments, with
the order being specified by the list of field names in the braces.
This named-field facility can be used for a pattern synonym of any
directionality.

In GHC, data constructors with named fields can be used in no
fewer than nine different ways, listed in Figure 3. Only the first two
apply to data constructors without named fields. The extra seven
forms are supported uniformly for pattern synonyms with named
fields, because they all have simple desugarings into the basic first
two. For example these four definitions all mean the same thing,
with (5,7,9) all desugaring to (2).

getR1 (Polar r) = r -- (2)
getR2 (Polar {r = r }) = r -- (5)
getR3 (Polar {r }) = r -- (7)
getR4 (Polar { . .}) = r -- (9)

Even record update extends uniformly (for bidirectional pattern
synonyms), because the record-update expression (r {x = e })
desugars to

case r of
Polar {x = x , y = y } → Polar {x = e, y = y }

4.5 Infix Pattern Synonyms
Lexically, pattern synonyms behave just like data constructors, and
live in the same name-space. In particular,

• A pattern synonym can be an infix operator symbol starting with
“:”; for example:

infixl 4 :<| -- Optional fixity declaration
pattern x :<| xs ← (viewl → x :< xs) where
x :<| xs = x <| xs

• A non-operator pattern synonym can be turned into an infix
operator, in both patterns and expressions, by surrounding it
with backticks, thus:

f (x ‘Just2 ‘ y) = y ‘Just2 ‘ x

4.6 Pattern Synonyms with a Non-Data Return Type
A pattern synonym usually matches values of some particular data
type. For example:

pattern P :: a → Maybe (Maybe a)
pattern P a = Just (Just a)

which matches values of type Maybe (Maybe t). But pattern
synonyms can also be polymorphic in their return type, as we saw
in §2.3:

pattern Cons :: ListLike f ⇒ a → f a → f a

Pattern synonyms can even match a function value. For example:

pattern F :: a → (Bool → a)
pattern F a ← (($ True)→ a)

The rather strange view pattern matches against a function; it applies
that function to True and binds the result to a . So these two
functions are equivalent:

f1 , f2 :: (Bool → [Int])→ Int
f1 (F xs) = sum xs

f2 g = let xs = g True in sum xs

4.7 Import and Export of Pattern Synonyms
We also need to consider how to import and export pattern syn-
onyms. Before our implementation, names in the data constructor
namespace (and thus pattern synonyms) could be exported only with
the parent type constructor. As pattern synonyms have no parent
type constructor, there was no existing mechanism to export pattern
synonyms.

4.7.1 Independently Exporting Names
Users may export and import pattern synonyms individually. A new
keyword pattern is used to allow identifiers in the constructor
namespace to appear in import and export lists. If pattern Foo
appears in an export list, then the pattern synonym Foo will be
exported from the module. (Without the pattern modifier, Foo
would look like a type.)

module M (pattern Foo) where ...

pattern Foo ...

Likewise, when importing M , users may explicitly import Foo
with an import statement of the same form.

module N where

import M (pattern Foo)

4.7.2 Bundling
Pattern synonyms permit a library author the freedom to change out
a concrete representation of a datatype, even when the datatype’s
constructors were exported. Simply replace all constructors with
pattern synonyms that resolve to use the new internal representation,
and the downstream code continues to work. The only hiccup in this
plan is around import/export lists, where a user expects T (. .) to
affect the datatype T with all of its constructors. Our solution is
called bundling.

A user can bundle a pattern synonym with a type constructor
in the export list of a module. Once bundled, a pattern synonym
behaves like a child data constructor. In order to bundle a pattern
synonym P with T , we just need to list it explicitly in the export
list of the type constructor T .

module M (T (P)) where

data T = MkT

Context Type Description GHC extension Example
(1) E As an expression zero = CP 0 0
(2) P In a pattern isZero (CP 0 0) = True
(3) E Using record update syntax p {x = 1}
(4) E As an expression with record syntax zero = CP {x = 0, y = 0}
(5) P In a pattern with record syntax isZero (CP {x = 0, y = 0}) = True
(6) E In an expression with field puns NamedFieldPuns let x = 5; y = 6 in CP {y , x }
(7) P In a pattern with field puns NamedFieldPuns getX (CP {x }) = x
(8) E In an expression with record wildcards RecordWildCards let x = 5; y = 6 in CP {. .}
(9) P In a pattern with record wildcards RecordWildCards getX (CP { . .}) = x

Figure 3. The different ways a record constructor can be used

pattern P :: T
pattern P = MkT

In modules importing M , one can use wildcard notation in order
to import all the children of T , of which P is now one.

module N where

import M (T (. .))

Imports of this form will also import P as it is bundled with T
on its export in M .

A potential drawback of this feature is that users may unwittingly
use pattern synonyms where they are expecting ordinary data con-
structors. These pattern synonyms might unexpectedly be expensive
at runtime. However, it is up to the library author not to surprise
her clients by an abuse of bundling. Pattern synonyms remain doc-
umented differently from ordinary data constructors in Haddock
documentation, regardless of bundling.

When pattern synonyms are exported in this way, we perform
some basic typechecking in order to catch obvious mistakes. If the
scrutinee type of a pattern synonym P has a definite type constructor
T then it can be bundled only with T . However, a pattern synonym
which is polymorphic in the constructor (such as in §2.3) can be
bundled with any type constructor as there is no clear specification
for when we should reject such associations.

class C f where
get :: f a → a

pattern Poly :: C f ⇒ a → f a
pattern Poly v ← (match → v)

When should we allow Poly to be associated with a type
constructor T? Should we require that T is an instance of C ?
No, because an orphan instance could be available at the use site
but not at the definition site. However, it might be the case that
it is impossible to define such an instance for T (say T has the
wrong kind). In these situations it would be desirable to disallow
such exports. Further, the contexts may include equality constraints
and class constraints may have superclass constraints (which may
also include equality constraints!). Hence, prima facie, we can not
decide easily whether bundling should be permitted. As this decision
doesn’t affect soundness we allow any such association for this more
complex sort of pattern synonym.

5. Semantics of Pattern Synonyms
It is important to be able to give a precise, modular semantics to
pattern synonyms. Our baseline is the semantics of pattern matching
given in the Haskell 2010 report (Marlow et al. 2010), which is
defined as follows.

When matching a pattern against a value, there are three possible
outcomes: the match succeeds (binding some variables); the match
fails; or the match diverges. Failure is not an error: if the match fails

in a function defined by multiple equations, or a case expression
with multiple alternatives, we just try the next equation.

The semantics of matching a pattern p against a value v is given
by cases on the form of the pattern:

1. If the pattern is a variable x then the match always succeeds,
binding x to the value v .

2. If the pattern is a wildcard ‘ ’ then the match always succeeds,
binding nothing.

3. If the pattern is a constructor pattern (K p1 ... pn), where K is
a data constructor, then:

(a) If the value v diverges (is bottom), then the match diverges.

(b) If the value is of the form (K v1 ...vn) then we match the sub-
patterns from left-to-right (p1 against v1 and so on). If any
of the patterns fail (or diverge) then the whole pattern match
fails (or diverges). The match succeeds if all sub-patterns
match.

(c) If the value is of the form (K ′ v1 ... vn), where K 6= K ′

then the match fails.

It is simple to extend this semantics to cover view patterns and
pattern synonyms, as follows

4. If the pattern is a view pattern (f → p) then evaluate (f v). If
evaluation diverges, the match diverges. Otherwise, we match
the resulting value against p.

5. If the pattern is a constructor pattern (P p1 ... pn), where P is a
pattern synonym defined by P x1 ... xn = p or P x1 ... xn ← p,
then:

(a) Match the value v against p. The pattern p must bind the
variables xi ; let them be bound to values vi . If this match
fails or diverges, so does the whole (pattern synonym) match.

(b) Match v1 against p1, v2 against p2 and so on. If any of these
matches fail or diverge, so does the whole match.

(c) If all the matches against the pi succeed, the match succeeds,
binding the variables bound by the pi . (The xi are not bound;
they remain local to the pattern synonym declaration.)

These definitions are simple and modular, but it is worth noting
that the semantics of matching a pattern synonym is subtly different
from macro-substitution. Consider:

f1 :: (Maybe Bool ,Maybe Bool)→ Bool
f1 (Just True, Just False) = True
f1 = False

pattern Two :: Bool → Bool
→ (Maybe Bool ,Maybe Bool)

pattern Two x y = (Just x , Just y)

f2 :: (Maybe Bool ,Maybe Bool)→ Bool
f2 (Two True False) = True
f2 = False

On non-bottom values, f1 and f2 behave identically. But the call
(f1 (Just ⊥,Nothing)) will diverge when matching (Just ⊥)
against the pattern (Just True). On the other hand if f2 is applied
to the same value, using the semantics above, matching the value
against the pattern (Two True False) starts by matching against
the right hand side of Two’s definition, (Just x , Just y), which
fails! So the second equation for f2 is tried, which succeeds,
returning False .

Although a little unexpected, we are convinced that this is
the right choice, because it allows the semantics to be modular.
The “macro-substitution” semantics could only be explained by
saying “expand out the pattern synonyms, and take the semantics
of that”, which would be problematic for pattern synonyms that use
further pattern synonyms, and so on. Moreover, the implementation
would also be forced to use macro-expansion, with resulting code
duplication.

6. Pattern Signatures
Just as Haskell gives a type to every function and data constructor,
we must have a type for every pattern synonym P . The whole point
of having a type system is embodied in the following principle:

The Typing Principle. It should be possible to determine
whether a use of P is well-typed based only on P ’s type,
without reference to P ’s declaration.

This principle – which often goes unstated – is helpful to have
written explicitly, as it is much harder to achieve than one might
suppose.

6.1 Required and Provided Constraints
Recall from Section 3 the following:

• Type constraints may be required by a view pattern. These
constraints must be satisfied in order for the pattern match to be
well-typed.

• Type constraints may be provided by a constructor pattern. These
constraints are bound by a successful pattern match and are
considered satisfiable in the context of the match.

A complex pattern, containing both constructors and literal/view
patterns, may both require some constraints, and provide others. For
example:

data RP a where
MkRP :: (Eq a,Show b)⇒ a → b → RP a

f (MkRP 3 v) = show v

The pattern (MkRP 3 v) repays careful study. Matching MkRP
provides (Eq a,Show b). Then matching the nested literal pattern 3
requires (Eq a,Num a), and the use of show on the RHS requires
(Show b). Of these, (Eq a) and (Show b) are both satisfied by
the constraints provided by the match on MkRP , which leaves
(Num a) as required. So, f ’s inferred type is

f :: Num a ⇒ RP a → String

To summarise, the pattern (MkRP 3 v) provides (Eq a,Show b),
and requires (Num a).

6.2 Pattern Signatures
Suppose that we want to abstract this to a pattern synonym:

pattern P v = MkRP 3 v

What type should we assign to P?6 The key observation is this: to
uphold the Typing Principle, P’s type must somehow distinguish
between its provided and required constraints. Moreover, we need a
concrete syntax for P ’s type, so that we can write pattern signatures,
and so that GHCi can display P ’s type.

As remarked above, P requires (Num a) and provides the
constraint (Eq a,Show b). We use the following syntax to describe
P ’s type:

pattern P :: Num a ⇒ (Eq a,Show b)⇒ b → RP a

The general form of a pattern signature is thus (Figure 2)

pattern P :: required ⇒ provided ⇒
arg1 → ...→ argn → res

That is, the required context comes first, then the provided context.
We stress: this is a new element in the Haskell grammar, particular to
pattern synonyms. Its syntax deliberately makes it look a bit like an
ordinary Haskell type, but it is best to think of it as a new syntactic
construct – a pattern type, if you will.

If there are no required or provided contexts, you can omit them
altogether; you may also omit only the provided context. However,
to avoid ambiguity, if there is a provided context but no required
one, you must write () for the required one, thus:

pattern P :: arg → res -- No contexts
pattern P :: req ⇒ arg → res -- Required only
pattern P :: ()⇒ prov ⇒ arg → res -- Provided only

In practice, the occurrence of required constraints seems more
common than provided ones, so the slightly regrettable final form is
relatively rare.

6.3 Universal and Existential Quantification
We introduced the concept of existential variables in §3.2; an
existential type variable is brought into scope by a pattern match.
Other type variables involved in a pattern match are called universal
type variables – these are the type variables in scope outside of the
match. Thus, when we match the pattern Just x of type Maybe a ,
that a is a universal variable. If a variable a is universal in a pattern
p, then the pattern is well-typed for all choices of a . If a variable b
is existential in the pattern, then the pattern brings into scope some
choice for b.

A close reading of the definitions of universals and existentials
will show a striking similarity with required and provided constraints.
Indeed, this similarity is telling, with universal variables being paired
with required constraints (both must be available before the match)
and existential variables being paired with provided constraints (both
are made available by the match).

The syntax of pattern type signatures allows the programmer
to explicitly mention type variables, if they so choose, using the
forall keyword (typeset as ∀). According to the pairings above,
universals appear with required constraints and existentials appear
with provided ones. The example P from the beginning of the
previous subsection can be given this signature:

pattern P :: ∀a.Num a
⇒ ∀b.(Eq a,Show b)
⇒ b
→ RP a

We can see that a is universal and b is existential.
However, just as with constraints, figuring out which variables

belong in which category is sometimes quite subtle. At first blush,
it may seem that all universal variables must be mentioned in the

6 Please see the appendix for a formalisation of pattern synonym types, which
details what programs are accepted.

result type; after all, this is the case for data constructors. Yet it isn’t
so for pattern synonyms! Witness this example:7

readMaybe :: Read a ⇒ String → Maybe a

pattern PRead a ← (readMaybe → Just a)

Ponder a moment what the type of PRead should be. The result
type of PRead must be the argument type of readMaybe , which is
clearly String . The argument type of PRead must be a type which
has a Read instance. This leads to the type signature

pattern PRead :: Read a ⇒ a → String

In this signature, the variable a is properly universal: it must be
known before the match, and it is not brought into scope by the
match. And yet it does not appear in the result.

At second blush, it may seem that all universals must thus be
mentioned either in the result or in some required constraint. Yet it
isn’t so – at least in degenerate cases. Witness this example:

magic :: Int → a
magic = ⊥
pattern Silly x ← (magic → x)

The type for Silly can be only

pattern Silly :: a → Int

The question is this: is that a universally quantified or existentially
quantified? A little thought reveals that it is a universal, as it is surely
not brought into scope by the match. Here we have a universal,
mentioned in neither the result type nor in the (absent) required
constraint.

We wish to be able to infer the universal/existential distinction
without user intervention, at least in the common case. We have thus
implemented these Implicit Quantification rules, when the user does
not write explicit ∀s:

• All type variables mentioned in the required constraints or in the
result type are universals.

• All other type variables are existentials.

If the user does write explicit ∀s, we use the following scoping rules

• Existentials scope over only the provided constraints and the
arguments, not over the result type. For example, this is rejected
because the existential b appears in the result type (T b):

pattern P :: ()⇒ ∀b.b → T b

• Existentials must not shadow universals.

Note that the existentials’ scope is strictly smaller than the univer-
sals’. Indeed, this is what convinced us to put provided constraints
after required ones.

The Implicit Quantification rules misbehave on the signature
for Silly above, where a would be considered to be existential.
However, we believe that this kind of mistake is possible only in
degenerate cases, where some view pattern uses a function that
manufactures a value of some type out of thin air, like magic. To
get Silly to work, we must explicitly label the variable as universal,
thus:

pattern Silly :: ∀a.a → Int

Following the rules for required vs. provided constraints, if we have
only one ∀ in a pattern type, it describes universal variables. Thus
the ∀ makes a universal, and all is well again. We keep the Implicit
Quantification Rule simple (as stated above); if you want something
else, use explicit quantification.

7 Examples in this discussion are taken from the discussion on GHC ticket
#11224.

6.4 The Need for Pattern Signatures
As with any top-level construct, it is good practice to write a
signature for a pattern synonym. But sometimes it is necessary.
For example, take

data T a where
MkT :: Bool → T Bool

pattern P a ← MkT a

Should the typechecker infer pattern P :: a → T a or
pattern P :: Bool → T a? The user has to decide by pro-
viding a type signature along the definition of P . This situation
mirrors exactly the problem of assigning a type to the function
definition from Schrijvers et al. (2009):

f (MkT x) = x

Additionally, as with normal functions, a type signature can con-
strain a pattern synonym to a less polymorphic type, more suitable
for the domain.

6.5 GADTs and Pattern Synonyms
The return type of a pattern synonym may have nested structure.
Consider:

data T a = MkT a

pattern PT :: a → T (Maybe a)
pattern PT x = MkT (Just x)

The return type of PT is T (Maybe a), and this use of PT is
ill-typed:

f :: T a → Bool
f (PT) = True

It is ill-typed because the pattern (PT x) cannot match values of
any type T a , only those of type T (Maybe a). You can easily see
why by expanding the pattern synonym to get

f (MkT (Just)) = True

Notice that this is different from (and simpler than) GADTs. Consider

data S a b where
MkS1 :: a → S a (Maybe a)
MkS2 :: b → S a b

g :: c → S c d → d
g x (MkS1 { }) = Just x
g (MkS2 y) = y

Here, matching on MkS1 refines the type d to Maybe c – much
more complicated than what happened with PT , above.

We conclude that, unlike GADTs, the fact that the return type
of a pattern synonym has nested structure does not connote type
refinement. But can we use pattern synonyms to abstract over
GADTs? Yes, of course:

pattern PS x ← MkS1 x

Now, what type should we attribute to PS? We cannot say

pattern PS :: a → S a (Maybe a)

analogously to the signature of MkS1 because, as just discussed, a
structured return type does not connote GADT behaviour. (Remem-
ber the Typing Principle!) So instead we must use the more explicit
form of GADT typing, discussed in §3.3:

pattern PS :: ()⇒ (b∼Maybe a)⇒ a → S a b

So in pattern signatures, all type-refinement behaviour is expressed
explicitly with equality constraints, and not implicitly with struc-
tured return types.

The two may work in tandem. For example:

pattern PS2 :: ()⇒ (b∼Maybe a)⇒ a → (Bool ,S a b)
pattern PS2 x ← (True,MkS1 x)

6.6 Specialising a Pattern Signature
In Haskell, it is always OK to specify a type signature that is less
polymorphic than the actual type of the function. For example:

rev [] = []
rev (x : xs) = rev xs ++ [x]

Haskell considers all of these to be acceptable type signatures for
rev :

rev :: [a]→ [a]
rev :: [Maybe b]→ [Maybe b]
rev :: Ord a ⇒ [a]→ [a]
rev :: [Int]→ [Int]

In the same way, a pattern signature is allowed to constrain the
pattern’s polymorphism. For example, any of these signatures is
acceptable for the pattern synonym Just2 :

pattern Just2 x y = Just (x , y)

pattern Just2 :: a → b → Maybe (a, b)
pattern Just2 :: a → a → Maybe (a, a)
pattern Just2 :: Int → Bool → Maybe (Int ,Bool)

This specialisation works fine for the universally-quantified type
variables and required constraints of a pattern signature. But for
the existential part, matters are necessarily more complicated. For
example:

data T where
MkT :: Show a ⇒ Maybe [a]→ T

pattern P :: ()⇒ ∀b.Show b ⇒ [b]→ T
pattern P x = MkT (Just x)

The signature given is the most general one and, since the pattern
is a bidirectional one, only the most-general form will do. Why?
Because when using P in an expression, we must construct a T -
value that has a Show a dictionary and a Maybe [a] payload, for
some type a; and when pattern matching on MkT the client cannot
assume anything more than a (Maybe [a]) value with a (Show a)
dictionary available. If we make the signature either more or less
polymorphic than the one above, one or other of these requirements
will not be met.

If P were a unidirectional pattern, thus

pattern P x ← MkT (Just x)

then we have more wiggle room. For example, either of these
signatures would be accepted:

pattern P :: ()⇒ ∀b.[b]→ T
pattern P :: ()⇒ ∀c.c → T

Notice that this is exactly backward from the usual story: for a
unidirectional pattern synonym we can make the existential part of
its signature more polymorphic, but not less.

6.7 One Type Only
It seems to go without saying that a pattern synonym should have
a single type, but you might actually want it to have two. Consider
this pattern synonym

pattern P :: (Eq a,Num a)⇒ Maybe a
pattern P = Just 42

f :: (Eq a,Num a)⇒ Maybe a → Bool

f P = True

g1 x = P

g2 :: Num a ⇒ b → Maybe a
g2 x = Just 42

Matching P requires (Eq a,Num a); hence the pattern signature
P , and the type signature for f that matches on P . But what about
function g1? If we replaced P by its definition we would get g2 ,
which only requires (Num a). But function g1 uses pattern P ,
and by the Typing Principle, we must type it looking only at P ’s
signature, not its definition. So we choose to give g1 the type
g1 :: (Eq a,Num a)⇒ b → Maybe a .

An alternative would be to carry two types for each pattern
synonym: one to use in patterns, and one to use in expressions.
Doing so would be perfectly sound and modular, but it is more
complicated to explain, so we decided to stick with one single type
for both the matcher (use as a pattern) and the builder (use as an
expression).

In this example the matcher had a less-general type than the
builder, but in explicitly-bidirectional pattern synonyms the reverse
can be the case. Here is a contrived example:

pattern Q :: Ord a ⇒ a → a → (a, a)
pattern Q x y ← (x , y)

where
Q x y | x 6 y = (x , y)

| otherwise = (y , x)

Here Q matches a pair; but when building a pair, Q puts the compo-
nents into ascending order. Here matching needs no constraints, but
building needs (Ord a).

If no signature is supplied, we infer the type from the pattern only.
So Q requires a signature, because the inferred signature would be
Q :: a → b → (a, b), which in this case is too general for the
builder.

7. Implementation
We have fully implemented pattern synonyms in GHC, a state of the
art compiler for Haskell. Over 70 third-party packages in Hackage
already use the feature.

In this section we briefly sketch our implementation strategy. It
has the following characteristics:

• It supports modular, separate compilation. In particular, pattern
synonyms do not need to be expanded at their use sites, whether
in patterns or in expressions.

• One might worry that the abstraction of pattern synonyms comes
at an execution-time cost but in practice, for small definitions at
least, the cost is zero.

7.1 Matchers and Builders
In the implementation, each pattern synonym P is associated with
two ordinary function definitions: the matcher which is called when
P is used in a pattern, and the builder which is called when P is
used in an expression.

Consider the example from §6.2.

data RP a where
MkRP :: (Eq a,Show b)⇒ a → b → RP a

pattern P :: Num a ⇒ (Eq a,Show b)⇒ b → RP a
pattern P v = MkRP 3 v

The builder for P , written $bP , is straightforward:

$bP :: (Num a,Eq a,Show b)⇒ b → RP a
$bP v = MkRP 3 v

The right hand side is taken directly from the definition of P , treating
the pattern as an expression. (In an explicitly-bidirectional pattern
synonym, the builder is defined in the where clause.)

The matcher for this example looks like this:

$mP :: ∀r a.Num a
⇒ RP a
→ (∀b.(Eq a,Show b)⇒ b → r)
→ r
→ r

$mP x sk fk = case x of
MkRP 3 v → sk v

→ fk

The function matches its first argument x against P ’s defining
pattern. If the match succeeds, the matcher passes the matched
values (in this case just v) to the success continuation sk ; if the
match fails, the matcher returns the failure continuation fk .

The code for the matcher is very straightforward, but its type
is interesting. In particular, notice that the success continuation is
polymorphic in the MkRP ’s existentially-bound type variables, and
in its “provided” context (Eq a,Show b). This is very natural:
a successful match binds the existential variables and provided
dictionaries.

7.2 Optimisation
It is a simple matter to adapt the pattern-matching compiler (a
component of GHC’s desugarer) to invoke the matcher $mP when
P is encountered in a pattern. For example the definition

f :: [RP Int]→ String
f (P x :) = show x
f ys = show (length ys)

desugars to

f = λys → let fk = show (length ys) in
case ys of

(z : _)→ $mP z (λx → show x) fk
[] → fk

The empty-list of the outer pattern match and the failure continuation
of P ’s matcher function both invoke the fk continuation which
constitutes the second (and potentially subsequent) equations of f .

But this looks expensive! Invoking $mP means allocating a
function closure for the success continuation. And that is necessary
in general. But $mP is a perfectly ordinary function, and in many
cases its definition is relatively small. GHC already has elaborate
support for cross-module (and indeed cross-package) inlining, so
if the implementation of $mP is indeed small, it will be inlined at
the call site, and the result will be precisely as efficient as if you
expanded the pattern-match at the usage site.

7.3 Unlifted Result Types
There is one wrinkle in this scheme, involving unboxed types (Pey-
ton Jones and Launchbury 1991). Consider this Haskell program,
where g is an expensive function with type g :: Bool → Int#:

f :: RP Int → Int#
f (MkRP 0) = 0#
f = g True

We do not want to desugar this to

f = λx → $mP x (λv → 0#) (g True)

The trouble8 is that since (g True) :: Int#, GHC must use call-by-
value for the third argument of $mP , so the failure continuation will
be expensively evaluated even when it is not going to be used. We
solve this by adding a Void# argument to the failure continuation,
so $mP ’s actual definition is

$mP :: ∀r a.Num a
⇒ RP a
→ (∀b.(Eq a,Show b)⇒ b → r)
→ (Void#→ r)
→ r

$mP x sk fk = case x of
MkRP 3 v → sk v

→ fk void#

Adding the extra argument effectively gives us call-by-name (as
desired) rather than call-by-value. There is no need for call-by-need,
because the failure continuation can be invoked at most once.

If the pattern binds no variables then the success continuation
may have the same problem, so in that case we add an extra Void#
argument to the success continuation as well.

8. Evaluation
We studied the 9,705 packages uploaded to Hackage to evaluate
the real-world usage of pattern synonyms. There are 17,644 unique
definitions in 72 packages, but the large majority of these (16,826)
are in machine generated code from libraries which wrap low level
bindings. For example, the OpenGLRaw and gl packages define a
total of 11,080 pattern synonyms in total.

This leaves 818 hand written definitions from 63 distinct pack-
ages which we can study. The most common form is implicitly bidi-
rectional of which there are 506 definitions in 45 different packages.
There are 137 explicitly bidirectional definitions in 11 packages.
This number is greatly inflated by 3 packages defining 122 between
them. This leaves 175 unidirectional pattern synonyms from 20
different packages.

On the other hand, pattern signatures are seldom used. There are
just 29 pattern signatures on Hackage from 12 distinct packages.
This is despite the accepted good practice of including type signa-
tures for all top-level function definitions. Quite possibly, a reason
for the dearth of pattern signatures is that the first release of GHC
with pattern synonyms (7.8) did not include support for signatures,
which became available only a year later. While we motivated the
inclusion of pattern signatures as necessary for dealing with certain
kinds of patterns, it can sometimes be hard to understand many
pattern synonym definitions without signatures, especially when a
pattern synonym is defined in terms of other pattern synonyms! In
the latest version of GHC there is a warning which hopefully will en-
courage more authors to include pattern signatures, in parallel with
the existing warning about missing signatures to ordinary functions.

The usage of pattern synonyms can be classified into three broad
categories. By far the most prevalent usage is in libraries which pro-
vide Haskell bindings to libraries written in lower level languages,
as mentioned above. The second class is using unidirectional pattern
synonyms to extract commonly used parts of more complicated data
types. The third (and least common) is for abstraction.

For example, pattern synonyms are used extensively by the
OpenGLRaw9 package which provides low level bindings to
OpenGL. Many options in the library are passed to functions as
GLenums which is a type synonym for unsigned integers. This is

8 Well-informed readers may also wonder about whether the type variable
r can be instantiated by Int#, an unboxed type. We use representation
polymorphism (previously called levity polymorphism) for this, something
that is already needed in GHC (Eisenberg 2015). We omit the details here.
9 https://hackage.haskell.org/package/OpenGLRaw

https://hackage.haskell.org/package/OpenGLRaw

difficult to represent natively as a sum type as the contexts which
each constant can be used are not disjoint. Further, it is sometimes
necessary to cast these constants to integers – in C, enums are just
integers so casting is a no-op but in a strongly typed language these
manual conversions become tedious.

Previous versions gave human readable names to each of these
constants but this only allowed easy construction of values. Pattern
matching could be achieved only through an indirect combination
of pattern guards and equality tests. In recent versions, these have
been replaced by pattern synonyms which also allow users to match
on these values directly rather than relying on guards.

{ Earlier versions }
gl_MAJOR_VERSION :: GLenum
gl_MAJOR_VERSION = 0x821B

{ Recent versions }
pattern GL_MAJOR_VERSION :: GLenum
pattern GL_MAJOR_VERSION = 0x821B

Secondly, authors use pattern synonyms to improve readability.
Authors define pattern synonyms in a local scope in order to improve
the readability of just one or two functions. A real-world example
can be found in §2.

Finally, the most surprising discovery to the authors was that
explicitly bidirectional pattern synonyms are not yet widely used at
all. There are only a handful of examples which can be found on
Hackage. This is despite explicitly bidirectional synonyms being
the most interesting (and powerful) because of the ability for more
complicated abstractions. In non-trivial cases, the desired interface
and internal representation will be quite different. As a result,
inferring the builder from pattern is not possible. We are hoping
that as pattern synonyms become more well-known (assisted by the
publication of this paper!), Haskellers will find more good uses for
the more powerful capabilities of this new feature.

Interestingly, a few packages use pattern synonyms to provide
more efficient but unsafe representations of data types. The flat-
maybe10 package provides an alternative, user-land implementation
of Maybe which uses only a single pointer. If the pointer points to a
sentinel null value then the value is Nothing , otherwise the pointer
points directly to the object we want.

newtype Maybe (a :: ∗) = Maybe Any

data Null = Null

null :: Null
null = Null

pattern Nothing :: Maybe a
pattern Nothing ← (isNothing#→ 1#) where

Nothing = (unsafeCoerce # null :: Maybe a)

pattern Just :: a → Maybe a
pattern Just a ← (isJust#→ (#0#, a#)) where

Just (a :: a) = (unsafeCoerce # a :: Maybe a)

isNothing# and isJust# are implemented using unsafe com-
piler primitives but pattern synonyms provide a safe interface.
structs11 is another library to experiment with this idea.

Several packages surveyed make use of unidirectional pattern
synonyms to allow complex deconstructing of abstract types but then
separately define builders rather than using explicitly bidirectional
synonyms. We hope that these library authors will begin to use
these more advanced features for interesting applications. Generally
library authors wish to support three major versions of GHC which
leads to slow widespread adoption of new features.

10 https://hackage.haskell.org/package/flat-maybe
11 https://hackage.haskell.org/package/structs

9. Related Work
The most closely related to our work is abstract value constructors
as described by Aitken and Reppy (1992). They similarly propose
to give names to patterns which can then be used in both patterns
and expressions like our implicitly bidirectional pattern synonyms.
We extend their work by introducing unidirectional and explicitly
bidirectional pattern synonyms as well as signatures. Further to this,
because of view patterns, this simple implementation is significantly
more powerful than if we were to implement it in a language such
as SML where computation can not be performed in patterns.

Views are also very closely related. First described by Wadler
(1987) in his proposal, a user provides inverse functions in and out
which form an isomorphism between the internal representation and
user-visible representation. As we have seen, pattern synonyms can
be used to implement views but are more general. Recently, views
have become popular in dependently typed programming languages
where they are used in order to prove properties about abstract data
types (McBride and McKinna 2004).

Burton et al. (1996) proposed an extension to implement views
in Haskell. At the time of the proposal, view patterns had not been
implemented; it was thus not possible to perform computation in
patterns. Their proposal also explicitly disallowed use in expression
contexts which is at odds with the goal of abstraction. Okasaki
(1998) also described a very similar proposal of views for Standard
ML with some additional discussion about how they should behave
relative to state and a module system.

There are also several modern implementations. With F#’s active
patterns (Syme et al. 2007) users can either define total active
patterns which provide total decomposition akin to views or partial
active patterns which are more similar to pattern synonyms. Further
to this, active patterns can also be parameterised. In this case, the
patterns are defined by functions of type a1 → ... → an → s →
Maybe t and at the use site a user must first apply the pattern to
values of type a1, ..., an . For example, it is possible to define a single
pattern which takes a regular expression as an argument before using
the regular expression in order to check whether a string matches.
Active patterns can be used only in patterns.

Simple pattern synonyms are implemented in Agda (The Agda
Team 2016). In our terminology, it is possible to define only
implicitly bidirectional pattern synonyms. The implementation
technique is also much simpler – after renaming, the definition
is directly substituted into the abstract syntax tree. Patterns thus do
not have types and cannot enforce abstraction.

SHE (McBride 2009) (the Strathcylde Haskell Enhancement) im-
plements pattern synonyms for Haskell as a preprocessor. Users can
choose to define either unidirectional or implicitly bidirectional pat-
tern synonyms from a restricted pattern syntax (the patterns which
look the same in both contexts). Before parsing, SHE performs tex-
tual substitution to desugar all occurrences of pattern synonyms in
the file.

In Scala, users can define special objects called extractors (Emir
et al. 2007) by specifying apply and unapply functions which
specify how the object should behave in expressions and patterns
respectively. Given an extractor T, in expressions Scala desugars
T(x) to T.apply(x) whilst in patterns the unapply method is
called in order to determine whether a value matches. Extractors
share a likeness to explicitly bidirectional pattern synonyms however
it is not necessary to provide both methods – one can choose to omit
either.

Idris also has a simple form of pattern synonyms due to the
support for extensible syntax (Brady 2015). Users can define custom
syntactic forms which can also appear in patterns and are inserted
by template substitution.

https://hackage.haskell.org/package/flat-maybe
https://hackage.haskell.org/package/structs

10. Future Work
10.1 Associated Pattern Synonyms
In our discussion of polymorphic pattern synonyms in §2.3 we
noted that one could define a type class in order to characterise the
ways to build and match on a data type and then define a set of
pattern synonyms which used just those methods which could be
implemented in many different ways.

To take this idea a step further, instead of this indirect imple-
mentation method we could instead allow pattern synonyms to be
included in the definition of a class.

class ListLike f where
pattern Nil :: f a
pattern Cons :: a → f a → f a

instance ListLike [] where
pattern Nil = []
pattern Cons x xs = (x : xs)

This is mainly a syntactic nicety; if we extended bundling (as
described in §4.7.2) to also allow pattern synonyms to be bundled
with type classes then we could recover much of the power of this
proposal with very little effort.

In fact, for complex representations, it is still necessary to
define complex projection and injection functions. As a result, using
associated pattern synonyms is perhaps more work than the approach
demonstrated previously as a user must first define these complex
functions and then add on annoying boiler plate in order to define
the pattern synonym. One way around this might be to allow default
definitions to be included in the class definition but it is not clear
what this gains from the simpler extension to bundling.

There are also syntactic problems to overcome. Specifying the
signature for a pattern synonym does not give enough indication
whether one means a unidirectional or bidirectional definition nor
a prefix or record pattern synonym. It is important that each class
implements the same kind of pattern synonym as otherwise the
choice of instance determines in which contexts one can use the
associated pattern synonym.

10.2 Exhaustiveness Checking
Despite being a very common way in which to write functions, it
is all too easy to write non-total functions when pattern matching.
GHC includes a very robust exhaustiveness checker (Karachalias
et al. 2015) in order to check that functions defined in this way are
total. Due to the complexity of Haskell’s pattern language, there
are already a number of cases in which it is undecidable whether a
pattern match is exhaustive (e.g., with view patterns).

Pattern synonyms provide an interesting addition to this chal-
lenge. As they are defined in terms of patterns, one could simply
look through a pattern synonym in order to attempt to verify whether
the pattern matches are exhaustive. However, this solution is at odds
with abstraction. It is undesirable to expose the internal representa-
tion through exhaustiveness warnings.

A set of pattern synonyms may be exhaustive even if the
underlying patterns are not. As one such example, a user might
want to represent command line flags by using strings. In order to
hide this representation, she provides an abstract type Flag with
some bidirectional pattern synonyms:

module Flags (Flag (AddOne,MinusOne)) where

newtype Flag = Flag String

pattern AddOne = Flag "add-one"
pattern MinusOne = Flag "minus-one"

Clients of this module can construct Flags via only these
synonyms, and thus these synonyms cover the entire space of

possible Flags. Enabling the exhaustiveness checker to be aware of
these seems to require user intervention, but it would be convenient
to be able to do so. Then in order to perform an exhaustive match, a
user would need to match on each pattern synonym in the group.

Conclusion Pattern synonyms extend the Haskell language with
a useful new way of abstraction; the quick uptake by third-party
package maintainers validates this view. Furthermore, since abstrac-
tion in Haskell requires types, introducing this feature led to the
intricacies of pattern types, previously only implicitly defined and
loosely understood.

References
W. E. Aitken and J. H. Reppy. Abstract value constructors. In ACM SIGPLAN

Workshop on ML and its Applications, pages 1–11, 1992.
E. Brady. Idris documentation: Syntax extensions. http://docs.

idris-lang.org/en/latest/tutorial/syntax.html, 2015.
W. Burton, E. Meijer, P. Sansom, S. Thompson, and P. Wadler. A (sic)

extension to Haskell 1.3 for views. Mailing List, October 1996.
R. A. Eisenberg. An overabundance of equality: Implementing kind

equalities into Haskell. Technical Report MS-CIS-15-10, University
of Pennsylvania, 2015. URL http://www.cis.upenn.edu/~eir/
papers/2015/equalities/equalities.pdf.

B. Emir, M. Odersky, and J. Williams. Matching objects with patterns.
In Proceedings of the 21st European conference on Object-Oriented
Programming, pages 273–298. Springer-Verlag, 2007.

M. Jaskelioff and E. Rivas. Functional pearl: a smart view on datatypes.
In Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming, pages 355–361. ACM, 2015.

G. Karachalias, T. Schrijvers, D. Vytiniotis, and S. P. Jones. GADTs meet
their match. In International Conference on Functional Programming,
ICFP, volume 15, 2015.

S. Marlow et al. Haskell 2010 language report. Available online http://www.
haskell. org/(May 2011), 2010.

C. McBride. The Strathclyde Haskell Enhancement. https://personal.
cis.strath.ac.uk/conor.mcbride/pub/she/, 2009. Accessed:
2016-03-23.

C. McBride and J. McKinna. The view from the left. Journal of functional
programming, 14(01):69–111, 2004.

C. Okasaki. Views for Standard ML. In SIGPLAN Workshop on ML, pages
14–23, 1998.

S. Peyton Jones and J. Launchbury. Unboxed values as first class citizens.
In R. Hughes, editor, ACM Conference on Functional Programming and
Computer Architecture (FPCA’91), volume 523, pages 636–666, Boston,
1991.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In Proceedings of the
Eleventh ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP ’06, pages 50–61, New York, NY, USA, 2006. ACM.

T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Complete
and decidable type inference for GADTs. In ACM Sigplan Notices,
volume 44, pages 341–352. ACM, 2009.

D. Syme, G. Neverov, and J. Margetson. Extensible pattern matching via a
lightweight language extension. In ACM SIGPLAN Notices, volume 42,
pages 29–40. ACM, 2007.

The Agda Team. Release notes for Agda 2 version 2.3.2.
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=
Main.Version-2-3-2, 2016. Accessed: 2016-03-23.

P. Wadler. Views: A way for pattern matching to cohabit with data abstraction.
In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, pages 307–313. ACM, 1987.

http://docs.idris-lang.org/en/latest/tutorial/syntax.html
http://docs.idris-lang.org/en/latest/tutorial/syntax.html
http://www.cis.upenn.edu/~eir/papers/2015/equalities/equalities.pdf
http://www.cis.upenn.edu/~eir/papers/2015/equalities/equalities.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Version-2-3-2
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Version-2-3-2

A. Formalisation
To formalise the typing of pattern synonyms, we need a model
language that has all the features that are interesting in their interplay
with pattern matching. The model language formalised here has the
following features:

• Nested pattern matching on data type values
• Parametric and typeclass-based polymorphism: types are of

the form ∀α.Θ ⇒ τ , where α are the bound type variables,
and Θ contains typeclass and equality constraints on them.
Polymorphism is introduced by let bindings and top-level
definitions (lambdas are monomorphic).

• GADT-like data constructors: the type of data constructors
can contain typeclass and equality constraints and existentially-
bound type variables: K : ∀α β.Θ⇒ τ → T α is a valid data
constructor for the data type T α. As described in §3.3, we can
recover the full power of GADTs just with equality constraints
on data constructors.

• View patterns: pattern matching can do arbitrary computation by
applying a function on the scrutinee and then pattern matching
on the result. In our presentation here, there is no flow of infor-
mation from preceding pattern matches into the view expression,
unlike in Haskell. This difference is immaterial to our topic.

Figures 4 and 5 describe the syntax and inference rules of our type
system. Three kinds of contexts are used:

• The context Γ of (term) variables, mapping variable names to
(potentially polymorphic) types.

• Σ collects the instance constraints
• Ψ is the set of rigid (existentially-bound) type variables that

cannot be abstracted over.

Other contextual information is taken as axiomatic:

• Data types and data constructors are assumed to be given a priori
• There is no facility to introduce new typeclasses. Overloaded

functions are assumed to be given in the initial Γ.
• Types are assumed to be well-formed and valid: type variable

scoping is not tracked and no kind checking is done.

To add pattern synonyms to this formalisation as a proper
abstraction of patterns (i.e., adhering to the Typing Principle), they
must be characterised by a type that allows pattern typing statements
of the form

P :? Γ0, (Σ0, ?) ` pati : τi Γi,Σi,Ψi

Γ0,Σ0 ` P pat1 . . . patn :? Γ, (Σ, ?), (Ψ, ?)

where P pat1 . . . patn is a fully-applied pattern synonym. As the
above shows, the requirement on the characterisation of a pattern
synonym is to determine:

• The extension (if any) to the instance context Σ0 in which sub-
patterns and the right-hand side are checked

• The extension (if any) to the set of rigid type variables
• Typing of the pattern synonym itself, i.e. its requirements on the

instance context Σ0 and the relation between sub-pattern types
τi and the pattern synonym application’s type

By looking at each possible way a pattern synonym can be
defined (as a variable, as a wildcard pattern, as a data constructor
pattern of some arity, or as a view pattern), we can see that to observe
the Typing Principle, a pattern synonym type for a pattern synonym
P p1 . . . pn must account for:

expr e, f ::= con Constructor
| expr expr Function application
| var Variable occurrence
| ‘λ’ var ‘ 7→’ expr Lambda abstraction
| ‘case’ expr ‘of ’ alt Branching
| ‘let’ var ‘=’ expr ‘in’ expr Variable binding

alt ::= pat ‘7→’ expr Alternative

Figure 4. Syntax of expression

• The type schema of the scrutinee ∀α.Θreq ⇒ τ . The required
instance context Θreq is used for view patterns in instantiating
polymorphic view functions;

• The set of newly-introduced rigid type variables β, used for data
constructor patterns,

• The types of the arguments p1 : τ1, . . . , pn : τn, where τi can
contain free variables from α and β,

• The instance context extension Θprov provided by data construc-
tor patterns

leading to the pattern synonym type and the typing rule shown on
figure 6. Indeed, this corresponds to the pattern signature described
in §6.

Γ,Σ ` e : τ

K : ∀α.Θ⇒ τ0 Σ ` Θ[τ/α]

Γ,Σ ` K : τ0[τ/α]

Γ,Σ ` f : τ1 → τ2 Γ,Σ ` e : τ1

Γ,Σ ` f e : τ2

(x : ∀α.Θ⇒ τ0) ∈ Γ Σ ` Θ[τ/α]

Γ,Σ ` x : τ0[τ/α]

Γ, x : τ1,Σ ` e : τ2

Γ,Σ ` λx 7→ e : τ1 → τ2

Γ,Σ ` e0 : τ0 Γ,Σ ` pati 7→ ei : τ0 7→ τ

Γ,Σ ` case e0 of pati 7→ ei : τ

Γ, x : τ0, (Σ,Θ) ` e0 : τ0 FV (Γ) ∩ α = ∅ FV (Θ) ⊆ α Γ, x : ∀α.Θ⇒ τ0, Σ ` E : τ

Γ,Σ ` let x = e0 in e : τ

(a) Typing rules of expression

Γ,Σ ` alt : τ0 7→ τ

Γ,Σ ` pat : τ0 Γ′,Σ′,Ψ Γ,Γ′,Σ,Σ′ ` e : τ Ψ ∩ FV (τ) = ∅
Γ,Σ ` pat 7→ e : τ0 7→ τ

(b) Typing rules of alternatives

Γ0,Σ0 ` pat : τ Γ,Σ,Ψ

Γ0,Σ0 ` x : τ x : τ, ∅, ∅ Γ0,Σ0 ` : τ ∅, ∅, ∅

K : ∀α β.Θ⇒ τ1 . . . τn → T α Γ0, (Σ0,Θ[τ ′/α]) ` pati : τi[τ
′/α] Γi,Σi,Ψi

Γ0,Σ0 ` K pat1 . . . patn : T τ ′ Γ, (Σ,Θ[τ ′/α]), (Ψ, β)

Γ0,Σ0 ` e : τ → τ ′ Γ0,Σ0 ` pat : τ ′ Γ,Σ,Ψ

Γ0,Σ0 ` (e→ pat) : τ Γ,Σ,Ψ

(c) Typing rules of patterns

Figure 5. Syntax and typing rules

pat ::= . . . (see figure 1)
| P pat1 . . . patn Pattern synonym

P : ∀α.Θreq ⇒ ∀β.Θprov ⇒ τ1 → . . .→ τn → τ Σ0 ` Θreq[τ
′/α] Γ0, (Σ0,Θprov[τ

′/α]) ` pati : τi[τ
′/α] Γi,Σi,Ψi

Γ0,Σ0 ` P pat1 . . . patn : τ [τ ′/α] Γ, (Σ,Θprov[τ
′/α]), (Ψ, β)

Figure 6. New syntax and pattern typing rule for pattern synonyms

	Introduction
	Motivation
	Abstraction
	Readability
	Polymorphic Pattern Synonyms

	Pattern Matching in Haskell
	View Patterns and Literal Patterns
	Pattern Matching with Existentials
	GADT Pattern Matching

	Pattern Synonyms
	Implicitly Bidirectional Patterns
	Unidirectional Pattern Synonyms
	Explicitly Bidirectional Pattern Synonyms
	Pattern Synonyms with Named Fields
	Infix Pattern Synonyms
	Pattern Synonyms with a Non-Data Return Type
	Import and Export of Pattern Synonyms
	Independently Exporting Names
	Bundling

	Semantics of Pattern Synonyms
	Pattern Signatures
	Required and Provided Constraints
	Pattern Signatures
	Universal and Existential Quantification
	The Need for Pattern Signatures
	GADTs and Pattern Synonyms
	Specialising a Pattern Signature
	One Type Only

	Implementation
	Matchers and Builders
	Optimisation
	Unlifted Result Types

	Evaluation
	Related Work
	Future Work
	Associated Pattern Synonyms
	Exhaustiveness Checking

	Formalisation

